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ABSTRACT

The problem considered in this report is that of discriminating
between two kinds of electroencephalogram (EEG) signals recorded
from a human subgect -- spontaneous EEG and EEG driven by photic
stimuli at the alpha frequency of the subject. Since an EEG record
represents a large amount of data, efficient feature reduction methods
are required to pick out a few features which are significant for dis-
crimination purposes.

The feature reduction methods available in the literature are first
examined critically. A nonparametric feature reduction method based
on a distance measure is developed, using the sampled values of the
EEG as features. The computations involved in feature reduction also
yield the best separating hyperplane at each stage. The error rate is
less than five percent when the decisions are based on twenty periods
of the alpha frequency.

A random process model is developed for the two kinds of EEG
signals based on the fact that the EEG driven at the alpha frequency has
more phase coherence than the spontaneous EEG. The model is then

employed for feature reduction and pattern classification. The model
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provides a four dimensional vector of sufficient statistics, which con-
tains all the information necessary for discrimination purposes. The
sufficient statistics are functions of the phase values of the EEG. They
are in the form of cumulative sums which can be updated as more
data becomes available. Moreover, the Bayes optimal separating
surface is linear in terms of these sufficient statistics.

The error rates obtained by the two methods are compared. It
is seen that in the 5% range of error rate, which is of practical interest,
the two methods perform equally well. The computational simplicity

of the model-based method gives it a decisive advantage.
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CHAPTER T

A SURVEY OF FEATURE REDUCTION

1.1 Role of Feature Reduction in Pattern Classification

The two class pattern classification problem can be
formulated as follows. We are permitted to make N measure-
ments on a given Eattern and thus extract an N-dimensional

pattern vector x = (x1, X2, « « . , xN) from the pattern.

The components x; of the pattern vector are called features.
Depending on the numbers x; the pattern has to be classified

as coming from one of two pattern classes H° or H!.

From a geometrical point of view, each pattern can
be considered as a point in N-dimensional space. The clas-

sification problem is to find a separating surface which

divides the N-dimensional space into two parts corresponding
to pattern classes H° and H! respectively. Any given pattern
is then classified according to the position of the point
representing it in N-dimensional space.

From the analytical point of view, the classification
problem reduces to finding a scalar function f: RN - R!
such that the pattern x is classified as coming from K or
H' according as f(x) Zo. f(x) = 0 will then describe the
separating surface.

In most cases of interest, it is found that the two

pattern classes do overlap to some extent, and therefore



are not separable in N-dimensional space. In such cases
the objective is to construct the separating surface (or
the function £) in such a way that the number of misclassi-

fications (or probability of error, in a statistical sense)

is minimized.

There are several algorithms available in the liter-
ature to find a suitable function f which is optimal in some
sense. Ho and Agrawala [1l] have classified these algorithms
depending on the nature of the information available about
the two pattern classes. This information may be knowledge
about the statistical distributions of the two pattern clas-

ses or learning patterns (also called training samples) of

known or unknown classification.
This thesis does not seek to develop any new algo-
rithms for pattern classification. Rather, the purpose is

to deal with the problem of feature reduction (also called

dimensionality reduction in the literature) which arises

from the following considerations. The computational com-
plexity involved in finding a suitable separating function

f increases rather rapidly as the dimension N of the pattern
vector goes up. This is true regardless of what information
is available about the pattern classes or which particular
algorithm is used to arrive at the function f. Therefore,
it is desirable to transform the pattern vector x = (%X, X,
o o e ; xN) into another vector y = (y;, V2, « « « 5 Yu) Of

considerably lower dimension, and then apply the classification



algorithms to the transformed pattern vector y.

If the transformation is denoted by y = g(x) and
the classification function in the y-space is h(i),’we ean
say that the original classification function £(x) is ex-
pressed as a composition of two functions

f =ho g.
This is schematically illustrated in Fig. 1l.1. By proper
choice of g it is possible that the computations involved
in finding g and h are considerably less than those involved
in finding £ directly. Considering that the feature extrac-
tion process might have picked up some features which are
not very relevant for discrimination purposes, the trans-
formation of featureslcan also simplify the ultimate physi-
cal realization.

It is important that the new features y should con-
tain all or most of the discriminatory information contained
in the original features x. In other words, data reduction
should be achieved with minimum loss of discriminatory in-
formation. The task of finding a suitable function g which
maps the original pattern vector x into a transformed patt-
ern vector y of considerably lower dimension may be called

the feature reduction problem.

In looking for a classification function £ the search
is necessarily restricted to a class of functions. The
function £ finally arrived at is supposed to be optimal only

among the functions within the particular class. This is
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true of the feature reduction problem too. For fixed
dimensions N and m, we look only at a class of functions
among all possible mappings R - R" and arrive at the opti-
mal map within this class. 1In Section 1.2 the simplest
case, where the mapping g just chooses a subset of the ori-
ginal features x, will be considered. Section 1.3 deals
with the next simplest kind of mappings, namely, those which
produce linear combinations of the original features X.
Figures 1.2 and 1.3 show simple two-dimensional examples
where such mappings are advantageous. In Fig. 1.1 the fea-
ture x; alone is sufficient for discrimination. In Fig. 1.2
the classification function can be reduced to a cubic in a
single variable y; = Q;X; + 03X, instead of a cubic in two

variables x; and Xz.

1.2 Procedures for Choosing a Subset of Features

Procedures for choosing a subset of features will be
considered now; linear combinations will be considered later.
The mapping g: RM - R® which chooses a subset of

the features X ¢ Ry is

Y1 = Xj

..., i) S, 2,

Y2 = Xy, where (i,, ip

N)Withi]_?éig?é"'?éima

1

Yo = Xy
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It is easy to see that there are precisely (ﬁ) such mappings.
The feature reduction problem amounts to finding one among
these (ﬂ) mappings which is optimal in some sense. The fol-
lowing subsections are devoted to a discussion of some app-
roaches proposed in the literature. All of them assume that
the joipt probability densities of the features under each
class are known and denoted by p(x;, Xg, « « - Xy | ut),
i=20, 1.

1.2.1 Direct minimization of probability of error

Taking the Bayesian approach, let P(K°) and P(H!) be
the subjective prior probabilities of the two pattern clas-
ses, which reflect one's judgment about the frequency of
occurrence of each class. Choosing any subset of features
Xo = (x11’ Xigs o+ o s xif) we can compute the marginal
densities p(X, | H'), i = 0, 1 simply by integrating out
the remaining features. If we are restricted to using only
¥z s the best that can be done is to use the Bayes decision
rule, namely,

H  plxa |B)

€ if

, z 1.
H! plxs |H)

The Bayes error Pe is given by

P, = ] Min[P(E° )p(xs [E°), P(H )p(X, |H )]axa
Y]

n



where (, is the space spanned by ¥,. The Bayes error can

be computed for all subsets of cardinality m and the subset

which minimizes Pe is chdsen.
This method suffers from several disadvantages, some

of which are listed below. |

(i) In a practical application, if N is large, it is
difficult to get good estimates of the joint prob-
ability densities (this criticism can be levelled
~against all procedures described in section 1.2).

(ii) The total number of feature subsets to be examined
is (ﬁ), thch can be prohibitively large and make
the scheme impractical.

(iii) The integration needed to obtain P involves a min-
imization at each point in R® and, therefore, may
be difficult to carry out in practice.

1.2.2 Seguential decision methods [2]

These methods make use of the apparatus of sequen-
tial decision theory. The feature subset is constructed by
sequential selection: its size is not specifiéd in advance.
The question asked at each stage of the selection process
is "Is it worth picking another feature and, if so, which one

should be chosen?" The criterion used is the Bayes risk,

which takes into account the costs of misclassification and
also the cost of observing the features. The selection of
features can be done 'off-line’ or ‘'on-line' as described

»

below.



a) Off-line method

The method works 'bff—line' in the sense that the
whole strategy for sequential selection of features is
worked out beforehand from a knowledge of the probability
densities of x under H° and H'. The actual values attained
by the features do not influence the strategy in any way.

Let Co, be the cost of labelling a pattern as belong-
ing to H' when in reality it comes from H°:; let C; be the
cost of labelling a pattern as belonging to H° when in real-
ity it comes from H'. Let Y be the cosf of observing any
one feature. If R(m) denotes the Bayes risk in making the
decision based on m features, the sequence R(m), m = 0, 1,
2, « « «» N can be computed as below.

A decision can be made without observing any fea-
tures in the following manner. If we arbitrarily assign
the pattern to class H! we incur an average cost of CoP(H°);
whereas if we arbitrarily assign the pattern to class H° we

incur an average risk of C;P(H'!). Therefore,
R(0) = Min [CoP(H°), C,P(H)].

If we decide to observe any one feature, say Xi,, the min-

imum cost of misclassification will be

[ Min [CoP(H°)p(x, |H°), C,P(H )p(xillHl)]detl-

X
iy
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The Bayes risk R(1l) will be obtained by minimizing this over
all available features and adding the cost of obser&ing one

feature. Therefore,

R(1) = Min f Min [CoP(H)p(x, |H°),
i;e(1,2,...,N) !

CIP(Hl)p(xillHl)]dxi1 + Y.

Having carried out the minimization, we know which feature
to observe, if at all. At the second stage the choice is
limited to the remaining features. It is inductively clear

that the expression for R(m) is

R(m) = Min [ Min [CoP(H )p(x, |H),
iz 1<i_ <N
im;éil ’iza"'aim-l

C;P(H )p(x, |H' )] + my

According to sequential decision theory the mth fea-
ture should be observed if and only if R(m) < R(m-1) and
m < N. The selection procedure is stopped when this condi-
tion is violated. It should be noted that if y = 0, R(m) <
R(m-1) and the selection stops only when m = N,
b) On-line methods

In this method, the probability densities are up-
dated at each stage in the light of the actual values assumed

by the features so far chosen. In fact feature reduction



and classification proceed side by side. For example, if

Zi,s Zi,y + + o+ o 2y are the observed values of the first
- :

(m-1) features

p(x; ‘Zi Zy geseqdy , HY) =
n 1 2 mn~-1

are known as functions of xy alone since the z's are mere
o

numbers. Therefore the revised Bayes risk R(m) is
R(m) = Min [ Min [CoP(H )p(x, lz{_,
ig: 1lSi,<n Xy v

. . . . m
ig# iy ,dp9ece,ipga

-oo,Zi 3 I'lo), CIP(HI)p(xi lz, ’0-0’21 3
m [ 1 om

H! )]dx, + my
m

The decision rule is unchanged. The number of features
ultimately chosen is truly a random variable since it de-

pends on Zyy Z1gs e e and may differ from one experiment

2

to0 another.

The sequential methods suffer from a drawback inher-
ent to all sequential feature selection procedures. This is
elaborated in 1.2.5.

1.2.3 Methods based on entropy [3]

The different approaches outlined so far involve a

detailed calculation of the probability of error, which can



be a difficult task under the best of circumstances (for
example, both pattern classes Gaussian with different means
and covariances). In an effort to overcome this difficulty,
methods which rely only on a gross statistical description
of the pattern classes have been developed. Entropy and

distance measures are examples of such gross descriptions.

The concept of entropy arises in thermodynanics and
information theory. To conform with the standard notation,
in this subsection only, the symbol H will stand for entropy
and the pattern classes will be denoted by C!' (instead of
H'), i = 0, 1. 1If p(C') is the prior probability that an

unknown pattern belongs to class i, the quantity
H(C) = - 2 p(C') log p(C!)
i

is called the entropy. It is a measure of the uncertainty

regarding the correct classification of a pattern. It can

be proved that

(i) H(C) is a minimum when all but one of the prior prob-
abilities are zero--in this case one can be certain
about the classification of any given pattern.

(ii) H(C) is a maximum when all the prior probabilities
are equal to each other--in this case one is most
uncertain about the correct classification of any
given pattern.

In general, the entropy attains a lower value when the



probabilities are concentrated in a few pattern classe;; it
attains a higher value when the probabilities are distribu-
ted among many classes.

When a set of features ¥, = {X11’ Xi_» » o+ o o xim}
has been observed, the probabilities associated with the pat-
tern classes are revised according to Bayes' Law, namely,

p (¥ |C)p(c?)
p(Cl|xy) =

?p(xm|C’)p(C’).

Therefore, the conditional entropy after observing ¥, is

H(C|x,) = - 2 p(C!|xs) log p(c!|xs).

Averaging over all possible values which can be attained by
the features, we get the average conditional entropy

AN

B(Clyxg) = - = f p(c!, Xa) log p(c? |xa)dXa -
P Xe
The average reduction in entropy achieved is defined as the
mutual information, that is, the information which the par-
ticular set of features carries about the correct classifi-

cation of the pattern.

I(Clyx,) = HI(C) = B(C|xa)-



It is proved in textbooks on information theory [3] that the
mutual information is a non-negative quantity. The mutual
information can be computed for all (ﬁ) feature subsets of
dimension m and the one which has maximum mutual information
with ¢! is chosen.

The integrations involved in the computation of the
mutual information I are simpler because the minimizing oper-
ation at each point in m-dimensional space has been avoided.
' However, entropy being a gross description of the feature
statistics, no unique relation exists between it and the
probability'of misclassification.

1.2.4 Methods based on distance measures

These methods stem from the intuitive notion that
the farther away the two pattern classes are situated in
feature space, the less will be the probability of commit-
ting an error in classification. Since each pattern class
should be properly looked upon as a statistical distribution
in feature space, the problem is to define an appropriate
distance between any two statistical distributions. It
wouid be desirable for this 'distance' to satisfy the three
metric properties of non-negativity, symmetry and triangle
inequality. (This last one does not apply to the two-class
case with which this thesis is mainly concerned.) In a
practical application, fhe distance is evaluated in the sub-
space spanned by each of the (ﬁ) feature subsets of dimension

m. The subset which maximizes the distance is chosen.



A few of the commonly used distance measures and
their properties are given below. (Kailath [6] has givén a
good account of these.) As in the case of entropy; there is
no explicit relation between the probability of error and
any of the distance measures. However, in some cases

bounds can be set on the probability of error.

a) da = f ]p(xm[Hﬁ) - p(xg H ) |"A%w, r =2 1
Xu
It is proved in textbooks on functional ‘analysis [4] that
the above distance satisfies the metric properties. No re-
lation with the probability of error is known.
b). Kullback's J-divergence or divergent information [5, 6]
The Bayes decision rule can be interpreted as set-

ting a threshold on the log-likelihood ratio defined as

It is reasonable to define a distance as the difference in
the average values of the log-likelihood ratio under the two
classes. The distance so defined is called the J-divergence

and is given by

J = E[log L(xy)|H°] - E[log L(¥%,)|H ]
p(Xa |H)
= I log p(.xm‘Hl) p(Xm‘Ho)de -

Kn
J‘ log P(Xm‘Ho)

P (Xa lHl )axy -
Xu p ¥y |H)



Non-negativity follows by

J = f [p(xe |H) = plxy |H )] log Ly, )dXa
Xn
= [ [L(xa) = 11 log L(x,)p (X« |H )dx,
Xm :
= 0,

since (L-1) log L 2 0 with equality if and only if L = 1.
Symmetry is obvious; J does not obey the triangle inequality.
The following theorem due to Karlin [7] is of some interest.
"Let ¥ and x' be two subsets of features (not necessarily of
the same cardinality). If J and J’ denote the divergent
information contained in these subsets, then J > J’ implies
the existence of a set of prior probabilities {ﬂ,l—ﬁ} asso-
ciated with the two pattern classes such that Pe(x,ﬁ) <
Pe(x',ﬂ)."

Karlih's theorem only assures us that the subset
containing less divergent information cannot be uniformly
better than the subset with more divergent information for
all prior probabilities. It does not even tell us for what
range of T fhe latter subset performs better. Kovalewsky
[8] has pointed out that the measure J cannot distinguish
between features which are distributed as sﬁown in Fig. 1.4,
even though the first feature is obviously better (no over-
lap of classes). This is because J becomes infinite for

both the features.
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EXAMPLE WHERE J-DIVERGENCE FAILS

plx)
‘ .

p(x;| HO) plx | H)

pixz)
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x
N

FIGURE 1-4



¢) The Bhattacharyya distance (B-distance) [6, 9]
The B-distance between the two pattern classes is

defined by

B=-1n[ ,/pOlE)p(x|H) dx
Xa

B satisfies non-negativity and symmetry properties; it does
not satisfy the triangle inequality. Kailath has given
bounds on the probability of error Pe in terms of B.

It was pointed out that distance measures, being
only gross statistical descriptions, cannot be related ex-
plicitly to the probability of error. The following theorem
due to Blackwell [10] brings out this fact forcefully.

"P(x,m) < Pe(x’,n) for all m if and only if
E LVILOOT[E'] s B /[y[L(x )] [H]

for all continuous concave functions ¥ (L)." J-divergence
and B-distance are only particular cases with ¥(L) = (1-L)
In L and ¢(L) = /L respectively. Other distance measures
can be constructed by taking different concave functions
¥ (L). Blackwell's theorem is not useful in practice since
it is impossible to test the inequality for all continuous

concave functions.



1.2.5 Suboptimality of sequential feature selection

procedures

The real drawback of all feature reduction proced-
ures which look for the best subset of given cardinality is
that the number of such subsets (ﬁ) can be prohibitively
large for any reasonably large size problem. It might be
thoughtrthat the features that make up the best subset of
cardinality m can be picked up in a sequential fashion in
the order of decreasing discriminatory information. In
fact, the sequential decision methods described in 1.2.2
work precisely in this manner. However, such sequential
procedures can never be truly optimal for the following rea-
son~-the best subset of features of cardinality k is not
necessarily a subset of the best subset of features of car-
dinality (k+1).

A simple example in Fig. 1.5 illustrates why this is
so. Each pattern is described by three features (x;, Xz,
Xs ); the two pattern classes are distributed on planes
QX3 + QzXp = Ko and 01 x3 + Qgxz = Kk, respectiﬁely. If
projected onto one of these planes, the two classes overlap
slightly along the X3 direction as shown. The marginal den-
sities of x3, X and xz are roughly as indicated. It is
clear that x; is the best single feature for discrimination
since the densities overlap least. However, if we want to
consider two features, x; and X; afford perfect discrimina-

tion depending on whether 0;x; + Qzxz evaluates to ko or k;.
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EXAMPLE SHOWING SUBOPTIMALITY OF SEQUENTIAL
FEATURE SELECTION
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Neither of the other pairs (x;, X3) and (xz, xX3) can per-
form as well. The point is proved since %3 & (x3, X). A
sequential procedure, which picks up x5 first and retains

it, can never discover the perfect pair (x;, Xz).

1.3 Procedures for Choosing Linear Combinations of Features

Having surveyed methods for choosing a significant
subset of features, we shall now consider the next simplest
feature mappings, namely, those which effect a linear trans-
formation of the feature space. The problem is to choose a
m X N (m < N) matrix A such that the new features y given by
Yy = AxX contain all or most of the discriminatory information
contained in the original features x. Two procedures given
in the literature are outlined below.

1.3.1 The Karhunen-Loeve expansion [11, 12, 13, 14]

Watanabe [11] first considered the problem of infor-
mation compression applied to continuous signals. Given a
continuous signal {x(t): t ¢ (0,T)} with known statistics,
the problem is to map it into a finite-dimensional vector
y = (vi, Y25 « + - , Ya) which contains the maximum possible
information about the continuous signal, in some sense.

Let R(t, T) = E[x(t)x(7)] be the correlation func-
tion of the random process x(t) and let {U; (t)} be the com-
plete, orthonormal set of eigenfunctions of the following

integral equation:



.
[ R, T (T)AT = Ay, (£).
[o]

Further let the eigenfunétions be ordered in such a way that
M > Xz > Xg . . . . (The eigenvalues can be proved to be
real and positive.) Now if we expand any given signal x(t)
chosen from the ensemble representing the random process,

in terms of {¥, (t)}
x(t) = Yl‘l’l (t) + Yng (t) + . .

it can be proved that the coefficients {y,;} are uncorrelated,
and that Elys|® = A\;. Since correlation implies redundancy
we can expect the representation (y;, y2, . . . ) to be op-
timal in some sense. If we consider only the truncated ex-

n
pansion 1§1Y1¢1(t), Watanabe [11] proved that the mapping

[

x(t) - |

2

has the following optimal properties:

(i) Let {6, (t)} be any other complete set of orthonormal

functions and let



Then
Blx(t) - ¥ yiti ()] S Elx(t) - F 2,0, (0)%;

that is, the co-ordinate system {wi(t)} minimizes the mean
square error of approximation.

(ii) Remembering Ay = Elyilz, let py = E|zile. Then,
n
- = Ki 10g )\.1 < - 12191 log Pg .

From what was said about entropy in section 1.2.3 the fol-
lowing interpretation is obvious. Physically speaking, the
energy of the signal will tend to be concentrated on the
average in fewer 'modes' 1if the signal is represented in the
Karhunen-Loéve co-ordinate system, rather than any other
co-ordinate system.

The signal x(t), instead of being infinite dimen-
sional, can be of large but finite dimension, say (x1, Xz,

. xN). The foregoing results still apply if we re-
place ‘correlation function' by 'correlation matrix' and
'eigenfunctions' by 'eigenvectors.' The application to fea-
ture reduction is obvious--except for the fact that in a
pattern classification problem the signal does not come

from a single statistical distribution; rather, it is



generated by several distributions (one corresponding to

each pattern class) each having a prior probability asso-
ciated with it. Chien andFu [13] have shown that the fore-
going results still hold iflwe replace E(:) by % E(- |H)p(H!).
In other words, the averaging has to be done with respect

to a weighted distribution. The mechanics of the so-called
'generalised Karhunen-Loéve expansion' are as follows.

The correlation matrices E(zg?lH‘) of each class are
either known or estimated from samples of known classifica-
tion. The eigenvectors {¢;: i =1, 2, . . . , N} of the
average correlation matrix F E(Ez?lHi)p(H’) are found and
arranged in the descending order of eigenvalues. Any new

sample X can be expressed as a unique linear combination

of the eigenvectors

XxX=vil1 + vyl + . . . + YNIN'

Then the mapping

T
Ya _____ﬂl ______ X1
Y= ______.‘!I_a'f _____ Xo
..----.'...T _____ - *
Yu Vs XN

achieves feature reduction optimally in the sense described

above.



Unlike any method discussed before, this procedure
does not require complete knowledge of probability density
functions. Knowledge about second order statistics of the
patterns is sufficient.

1.3.2 Optimization of some criterion involving A [15]

The problem of choosing the optimal transformation
A can be viewed as that of obtaining the minimising (or max-
imising) A with respect to a suitable criterion. An example
is the follo&ing. Suppose p(§lH°) and p(EIHl) are known or
can be estimated from training samples. With y = Ax, the
densities p(yla, B°) and p(y|A, B') can be computed as func-
tions of A. We might then ask for the A which maximizes

the distance between the transformed pattern classes
J@) = [ |plyla, B°) - p(yla, H)|?ay.

The maximiz ation can be carried out by gradient procedures.
It can also be subjected to certain constraints. For exam-
ple, one can constrain A to be a projection map, i.e. the
rows of A are orthonormal.

The main drawback of such methods is that the number
of elements in the matrix A can be quite large for any rea-
sonably large size problem. The gradient search will have
to be undertaken in a space of large dimension, making the

approach computationally difficult.
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1.4 The Contribution»of this Thesis

In this thesis, feature reduction and classification
techniques are applied to electroencephalographic (EEG) sig-
nals. The properties of these signals are given in detail
in Chapter II, which also describes how two classes of EEG
patterns arise. An EEG record represents a large amount of
data and efficient feature reduction technigues are no doubt
required.

With the exception of the Karhurien-Loeve expansion
described in 1.3.1, every other feature reduction method sur-
veyed requires a complete knowledge of the probability den-
sity functions of the patterns under each class. This re-
guirement is hardly satisfied by the EEG signals. Chapter
IITI develops a sequential feature selection method based on
a distance measure, which relies only on the first and sec-
ond order statistics of the EEG records. In this sense,
the method may be called 'non-parametric.’ Even this me-
thod becomes unwieldy if we have to base our decisions on
long lengths of EEG record.

Chapter IV dévelops a random process model for the
EEG signals in an effort to put some structure into the
apparently disorganised data. The model makes rather strong
assumptions; however, it is shown that certain statistical
and spectral properties of the signals predicted by the

model are in accord with the observed facts.
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Since the model makes strong assumptions, we éan
expect a pay-off in the form of simplified feature reduction
and classification procedures. In Chapter V it is shown
that the model yields a vector of sufficient statistics,
whose dimension is independent of the length of the EEG
record. In other words, the information contained in the
whole record can be summarized by a set of numbers, which
can be continuously updated as more data comes in. It is
also shown that the optimal separating surface is linear in
terms of these sufficient statistics, which leads to simple

classification procedures.
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CHAPTER II

A QUALITATIVE DESCRIPTION OF EEG

The feature reduction techniques developed in this
thesis are generally applicable in any pattern classifica-
tion problem. However, they are illustrated with special
referencé to the case of electroencephalograms (EEG). This
chapter is devoted to a brief, qualitative description of
relevant properties of EEG signals. It is hoped that this
discussion will help the reader in better appreciating the

results obtained in later chapters.

2.1 Spontaneous EEG

The term electroencephalography refers to the study
of the electrical activity of the human brain. This elec-
trical activity is usually studied by recording potential
changes of the order of microvolts on the surface of the
scalp. The precise origin of these potentials is not yet
fully understood. However, there is general agreement that
the potentials observed on the scalp are due to the syn-
chronous activity of a large number of cells in the brain.

2.1.1 Methods of recording

The EEG potentials are picked up by electrodes
arranged in transverse and longitudinal positions on the

scalp as described by Rémond et al. [16]. The recording may
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be unipolar or bipolar. In the former case the potentials
are measured with reference to an arbitrary level (usually
called the indifferent electrode): in the latter case the
potentials are measured between pairs of electrodes on the
scalp. The bipolar method really measures potential gra-
dients ;ather than potentials themselves.

In order to achieve some degree of reproducibility
in the results, it is necessary that the human subject be
kept in the same psychophysiological state during different
recordings. The term 'spontaneous EEG' refers to the case
where the recording is made with the subject in an alert
state, but cut off from external visual or auditory stimuli
in a darkened, soundless room. For general experimental con-
ditions see Anliker [43].

2.1.2 The spatio-temporal nature of EEG

At any instant during the recording of the EEG,

the observed potential differs from point to point on the
scalp. Therefore, a complete description of the phenomenon
can only be given by means of potential maps at every ins-
tant of time [17]. The spatial distribution of the poten-
tial is of some importance in medical applications of the
EEG. For example, in most normal subjects the potentials
are approximately symmetric about the center line of the
skull and any asymmetries are of diagnostic value. However,
of greater importance is the temporal behavior of the EEG
potentials. In order to study the temporal behavior, the

spatial parameter has to be eliminated. This can be done
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by observing the potential of only a single electrode (}n
the case of unipolar recofds) or only between a single pair
of electrodes (in the case‘of bipolar records), or by aver-—
aging the potentials of several electrodes as described by
Remond et al. In succeeding sections we shall be cqncerned
only with the temporal behavior of the EEG, which is typi-
fied by fig. 2.1,

2.1.3 Spectral analysis [18, 19, 20, 21]

As pointed out earlier, the EEG potentials indicate
the gross activity of a large number of’cells and therefore
need a statistical description. That is, a given EEG record
can be considered as a sample from a random process. The
first question to be asked is whether there are any domin-
ant frequencies (hidden periodicities) in the fluctuating
signal. The techniques of spectral analysis (or, equival-
ently, correlation analysis) of random signals can be used
to answer this question. Blackman and Tukey [18] have des-
cribed how to get good estimates of power spectra from fin-
ite samples of a random process. The basic facts are that
the estimate gets better if the spectrum is computed from a
longer length of the signal, and, in case we have only sam-
pled values of the signal, the resolution of the spectral
estimate can be improved by sampling more frequently. Var-
ious authors [19, 20, 21] have applied correlation and spec-
tral techniques to EEG signals. A typical spectral estimate

of a spontaneous EEG record is shown in Fig. 2.2. It was
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computed from 2!® = 8192 sampled values, the sampling inter-
val being one millisecond.

This power spectrﬁm exhibits most of the typical
behavior ascribed to such spectra in the literature. There
is considerable activity iﬁ the band of 8.5-10.5 ¢/s. This
is called the a-activity. It is generally true that the
o-frequency predominates in most alert normal adult sub-
jects, even though there are 'nondominant alpha subjects'
also. Hereafter, the term 'alpha frequency' shall apply to
the mode of the power spectrum. The spectrum has smaller
peaks on either side of the alpha frequency--they are the
d-activity (0.5-1.5 c/s), the 8-actitivy (3-8 c/s), the
o-activity (12-15 c/s), and the B-activity (17-20 c/s). 1In
this thesis, we shall be mainly concerned with the behavior

of the spectrum near the alpha frequency.

2.1.4 Statistical properties [19]

First and second order statistical properties of
the EEG signals are also of interest. If an EEG record is
split up into equal parts, with the length of each part
equal to the period of the alpha frequency and these ?arts
are averaged, then it is found that the average signal is
nearly zero as shown by the dotted line in Fig. 2.3.

Mathematically,

M=

u(t):% x(t+it,) ~0, 0 = t = t,

i

1



AVERAGE AMPLITUDE

+-50 v

AVERAGE SIGNAL

----- - SPONTANEOUS EEG
EEG DRIVEN AT ALPHA FREQUENCY

TIME IN MILLISECONDS

- —
——— il SO
- o~

FIGURE 2-3

L-11



IT-8

for large K, where t, = %;, f, being the alpha‘frequency;
This tends to rule out any 'additive noise' models; if in-
deed the 'noise' were additive in nature, it would have

been annulled in the average and the hidden cyclic activity
would have shown up. Rather, it suggests that the alpha
activity tends to lose its phase coherence with the elapse
of time. It should be remembered that if a large number of
sinusoids witﬁ different phase relationships are adaed, they
might average to zero.

The second order statistical properties are gener-

ally displayed by means of the autocorrelogram defined by

Ry(T) = & foTx(t)x(t + T)at.
If x(t) is a stationary random process with autocorrelation
function Rxx(T) then ERT(T) = RXX(T), showing that RT(T) is
an unbiased es#imate of RXX(T). It can also be proved [19]
that the variance of this estimate is proportional to %.
The Fourier transform of RT(T) is of course the spectral
estimate discussed in thé previous subsection.

A typical autocorrelogram of the spontaneous EEG is
shown by the dotted line in Fig. 2.4. It exhibits a decay-
ing cosine behavior, with its period equal to that of the

alpha frequency and the rate of decay reflecting the band-

width of the power spectrum around the alpha peak.
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2.2 EEG with Photic Stimuli

2.2.1 Evoked potentials [19, 22, 23]

The spontaneous EEG, as we have seen, represents the
electrical activity of the brain when the subject is cut off
from external visual and auditory stimuli. Various authors
[19, 22] have studied the effect of a sudden flash of light
(photic stimuius) on the observed EEG potentials. If the
procedure is repeated several times, the statistical average
of the EEG potential immediately following the presentation
of a stimulus would look as shown in Fig. 2.5. (The stimuli
should be presented with enough time interval between them
to reduce the inevitable correlations). The potential
shows a rise (conventionally EEG plots have negative scalp
potentials drawn upwards) to a peak and then dips to a smal-
ler peak in the negative direction before returning to nor-
mal. The period of this oscillation is approximately that

of the alpha frequency and it is called the evoked potential

for obvious reasons. Kitajima [23] has found that the magni-
tude of the evoked potential is approximately proportional
to the logarithm of the flash intensity.

2.2.2 Response to repetitive stimuli [24]

The evoked potential can be likened to the impulse
response of a dynamical system comprising of the brain and
the associated neural paths. It is of interest to study

the dynamic steady state response (frequency response) of
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this system, which can be achieved by presenting repetitive
stimuli at a fixed rate. The response could then be studied
as a function of the stimulus frequency. (The frequency
response can properly characterize only a linear time in-
variant system. The system representing the brain and the
neural paths is certainly more complicated.)

The result of these studies [24] has been as follows.
When the stimulus frequency is very near the alpha frequency,
the stimuli have the effect of driving the EEG into reson-
ance. The power spectrum of the EEG would then show a shar-
per peak at the alpha frequency as in Fig. 2.6, which should
be compared with Fig. 2.2. The statistical properties of
the signal also undergo a change. The average signal, shown
by the solid line in Fig. 2.3, is no longer zero, but looks
very much like an evoked response in Fig. 2.5. The auto-
correlogram (solid line in Fig. 2.4) decays at a slower rate
reflecting the decreased bandwidth around the alpha fre-
quency. It is as though the stimuli have the effect of
introducing phase coherence into the alpha activity.

If the stimulus frequency is slightly different (say
1 c/s away) from the alpha frequency sometimes it is found
that the alpha frequency locks onto the new frequency.
However, if the stimulus frequency differs considerably froﬁ
the alpha frequency, the phase coherence is lost and once
more we have spontaneous EEG behavior. Sometimes, the alpha

activity may even be blocked completely.
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2.3 Statement of the Classification Problem

The problem considered in this thesis is one of distinguishing
between a spontaneous EEG record and an EEG record with photic
stimuli applied at the alpha frequency. In the latter case, the
instants at which the stimuli are applied are assumed to be known.
From what has been said before, it is clear that if we have a suffi-
ciently long record, we can get a good spectral estimate. We could
then compute the energy within a certain narrow band centered at
the alpha frequency and, if this energy is less than a certain threshold,
the record can be classified as coming from a spontaneous EEG.
However, if we have to make the decision from a short length of the
record the frequency domain analysis would not be very accurate
and hence the decisions based on it would not be very reliable.

The following time domain approach has been taken by
physiologists to solve the classification problem using the phase
coherence (time-locking) feature of the EEG when driven by repetitive
flashes at the alpha frequency.

Let tp be the time taken by the EEG record in Fig. 2.1 to
attain its ma;;imum positive value after the reference mark {(which
coincides with the stimulus if one is present). t-p is evaluated for a
large number of responses known to belong to the same class. tp is
treated as a random variable; its mean and variance are then com-

puted. If the stimulus were present at the beginning of each waveform,
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then the variance of tp tends to be smaller because of the
time-locking feature. On the contrary, if the stimulus were
absent, there is no time—iocking and so the variance of
tp tends to be large. The disadvantage of this method is
that a fairly large number of responses is needed to get a
good estimate of the variance and hence the decision cannot
be reached quickly. Typically, the number of responses
needed to make a reliable decision is of the order of 600.
The object of this thesis is to develop feature
reduction and classification methods based on short lengths
of EEG record (typically 20 - 50 periods of the alpha fre-
quency) . Such methods can be useful in the case where the

application of the stimuli may be in short bursts.

2.4 Description of Data

The data were obtained from EEG records of two dif-
ferent subjects. The potentials were recorded by means of
a pair of electrodes located in the left occipital parietal
area. The records were of 10 minutes duration in each case.
Stroboscopic light was flashed into the eye of the subject
at the frequency of the alpha rhythm. The light was peri-
odically blocked so it did not reach the eyé of the subject.
Thus the entire EEG record was split up into several lengths
of spontaneous and driven nature. Each of these lengths

was about 25 seconds and so contained approximately 250
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periods of the alpha frequency. The entire record can bg
split up arbitrarily into 'training' and 'test' samples.
The continuous time‘signals were first recorded on
FM tape and then digitised. The sampling rate was chosen
carefully to avoid any distortion due to 'aliasing' [25].
The sampling interval was taken as one millisecond. The
'folding frequency' [25] would then be 500 c/s and the fre-
quency band of interest (say 0 - 20 c/s) is far below it.
There would be 100 sampled values in every period of the

alpha frequency.
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CHAPTER III

FEATURE REDUCTION BASED ON A DISTANCE MEASURE

In this chapter the sampled values of the EEG will
be treated as features in a linear classification scheme.
Section 3.1 deals with the case where a classification is
sought on the basis of a length of EEG record equal to one
period of the alpha frequency, that is, on the basis of 100
features (remembering that one period of the alpha frequency
is appriximately 100 milliseconds and that the sampling inter-
val is one millisecond). An algorithm, based on a statisti-
cal distance measure between the two pattern classes, is
developed to pick out significant ones among the 100 features.
A feature of the algorithm is that the computations involved
in the feature reduction also yield the optimal linear sep-
arating surface. However, it is found that error rates of
about 20% occur because of the inherent overlap of the two
pattern classes in 100 dimensional space. Section 3.2
extends the algorithm to the case where the classification
is based on a length of EEG record which is a multiple of
the period of the alpha frequency. It is shown that by bas-
ing the decisions on a sufficient length of EEG (20 - 50
periods of the alpha frequency) the error rate can be brought
down to 1% or less. In the following, the wora response
connotes the length of the EEG record between two successive

stroboscopic flashes, whether or not they are seen by the



I1II-2

subject.

3.1 Decision Based on a Single Response

3.1.1 The distance measure and its properties

One possible figure of merit which measures the
effectiveness of any particular feature for discrimination
purposes is the normalised square of the distance between
the means (thch is also a distance measure between the dis-~

tributions of the two pattern classes)

d = (3.1)
1
where ui and o0,{ denote the mean and the variance of feature
xX; under class j.
When we examine the combined effectiveness of a
group of features, we have to take into account the correla-

tions between features. The distance measure generalises to
a= (O - u)T( + o)t e - ) (3.2)

where py’ and I! are the mean vector and covariance matrix
of the features under consideration for the.distribution of
pattern class j.

This distance measure, which is sometimes called

the Mahalanobis D® statistic [26], can be explicitly related
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[27, 28] to the Bayes error if the pattern classes are Gaus-
sian with equal covariance matrices, N(u’, ¥) and N(u', %)
respectively. The Bayes separating surface, assuming equal

prior probabilities and equal costs of misclassification, is

log Lix) = -2 (x- 1) T5 (x-po) + 3 (x-u)To(x-u') = 0

or

_ (Eov_ EI)TZ‘—IE +'§'_L£OTZ—IE.O _ %EITZ-IEI = 0.
The decision rule is to classify x under H° if the left hand
expression is positive and under H!' if the left hand expres-
sion is negative. The expression, being a linear transforma-
tion of a Gaussian vector, is itself a Gaussian scalar. It

is easily seen that if x ¢ H' the expression is N(m;, 0),

where

mo =3 (& - uw)Te - w) =,
m = _% (EO -'H_l)TZ-l(.Lio _51) = - d,
o= (W - E})TZ‘l(Ef - ut) = 24.

Hence the Bayes error is given by

p(H®) o p(H)

1 ® - 1
P = ———— .. - 2 s - e -m )2a
e 270 Imexp 55 (Y-Mo)%dy + /210 foexp 56 (Y- m Y
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Mo

—7—5 1 @

1
=p;§.%) Im exp—%.yedy+g-(f_2£_§lf &—exp"fyzdy
. - /U

= 7%% f I exp (—-% y? )dy

=d

2

from which it is seen that Pe is a monotonically decreasing
function of d. Hence maximisation of d ensures minimisation
of P .
e
If the pattern classes are Gaussian with unequal
covariance matrices, N(u®, ¥°) and N(u!', £') respectively,
it can be shown that the distance measure can be related to

the B-distance of 1.2.4 in the following way.

0 w1
det (Z ;Z )

Jdet ™ .get X

1
B-—Zd+ 1n

Nf =

3,1.2 Principle on which algorithm is based

If we let 4 = u° - py! and £ = £° + I' equation (3.2)
can be written as

d=putsiy. (3.3)

Equation (3.3) éuggests a sequential algorithm for
feature selection. At each step, the proposed algorithm
would choose the feature which leads to a maximum increase
in the distance measure. If n features have already been

chosen,
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4, = U Xty

where 4 is a n X 1 vector of the difference in means and X
is the n X n matrix of the sum of the covariances. If a

new feature x,.+; 1is added,

i
T ! -
Gvr = (W) [ Z 1 c |7t [u
|
!

O‘n-i-l un+1

where [, +; 1is the scalar difference in means for X, +1, Oh+1
is the scalar variance of x,+; and C is a n X 1 vector whose
components are the covariances between the new feature x;+:
and the old features x; through x,. Applying the Frobenius

inversion formula* [29] it is easy to see that

I
I
! | y-1lc
I
T
el op+1-C IZic) U
d-n+1 - dn = A Mpge /O e e e e e l{" —————————————
1
{ Mn +1
1 Tsen1
: C=Un+l"c z C
I
i
I |
* . A I B
Let P=Im Xm | mXmn|.
| C ! D
in Xm ;| n Xn
L i
«1 _ |R + RBA™!CR - RBA™

where A = D - CRB and R =

%
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The feature which maximises d,+; — d, is chosen as the next
feature to be included.

The following facts emerge from this expression for
the increase in the distance measure. They are proved in
the Appendix.
i) Since any covariance matrix is at least positive semi-

definite, it can be proved that
Op+1 —. cfs-ic 2 0
which implies

d,+1 - d, = 0.
Therefore, bringing in an additional feature can never worsen
the discriminating capacity of the features already chosen.
ii) The increase in distance is zero if the new feature
X,+1 is a linear combination of the old features (x;, Xz,
e e e s Xy )
iii) The increase in distance is infinite if the two clas-
ses are singularly distributed on separate hyperplanes in
(n + 1) dimensional space.

iv) Since

T
un+1 - C ZIE=E[X"+1|X1 =X2 = e ® e = X, =O]
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and

T~ .
Gn+l —C 2‘—1C =Var [}{u-}-l!xl, Xg, e e ® 9 Xn]

it is seen that the algorithm chooses the (n + 1)th feature
in the same manner as it chooses the first one, except that
the mean and the variance now refer to the conditional dis-
tribution of x,.1, given that the previous features x;
through x, are all zero.

3.1.3 Details of the algorithm

i) Using a sufficiently large training set, estimates of
the N X 1 vector of the difference in means, and the N X N
matrix of the sum of the covariances are obtained.

ii) The first feature x,; is chosen such that

iii) At each subsequent step, the increase in the distance
measure (d,,; - d,) is computed for each of the remaining
features. The feature which gives rise to the maximum in-
crease is chosen.

iv) Having chosen the best feature, the inverse covari-
ance matrix I"! is updated according to the Frobenius inver-
sion formula.

v) The best separating hyperplane in the subspace spanned

by the features chosen so far is
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T
apt'_'i'ao-—o
where
- 13-1 (0 _ 1
ocpt.—(Z°+2)(_;_1_ ut)

Go = -z W0 + )T 4TI - ).

The weighting vector a and the threshold @, are computed.

pt.
(The optimality of this hyperplane is discussed in 3.1.4.)
vi) The process is stopped either after all features have
been exhausted or when the increase in distance is smaller

than a preset value.

3.1.4 Optimality of the algorithm

As pointed out in 1.2.5, it is an inherent charac-
teristic of the feature reduction problem that no sequential
algorithm can be truly optimal. This is so because the best
subset of n features is not necessarily a subset of the best
subset of (n + 1) features. Only by an exhaustive search of
all (E) possible feature combinations, at each step, one can
construct a truly optimal scheme; however, such an exhaustive
search rapidly becomes infeasible as the total number of
features increases.

Subject to this qualification, the algorithm is opti-
mal in the sense that, at each step, it picks the particular

feature which adds most to the effectiveness of the feature
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set already chosen. Moreover, the particular weighting vec-

tor % opt given by equation (4) maximises the Fischer cri-

" terion [30], which is expressed by

[gT(gc’ - ut)]®

a4+ e

and interpreted as the ratio of the interclass distance to
the intraclass dispersion along the direction a.

3.1.5 Results

A training set of 2000 responses of known classifi-
cation, roughly equally divided between the two pattern
classes, was used to compute the mean vectors and covariance
matrices. The separating surfaces given by the algorithm
were tested against a test set of 1000 responses. Fig. 3.1
shows how the actual error rate comes close to the predicted
error rate based on a Gaussian model. This fact also seems
to justify the stationarity assumption implicit in‘this
approach, since the training and test sets were separated by
about two minutes of EEG record.

It is also clear that decisions based on a small num-
ber of important features do almost as well as those based
on a much larger number of features. This leads to the con-
clusion that discriminatory information is contained in the
low frequencies (say O - 20 c¢/s). The best two features

correspond to the positive and negative peaks -of the average
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evoked response. ‘

The error rate cannot be brought below about 20% by
decisions based on a singlé response alone. Fig. 3.2, which
is a plot of the patterns in the two-dimensional subspace
spanned by the best two features, explains why this is so.
There is considerable overlap between the two classes as a
result of the large variances of the features within each

pattern class.

3.2. Decisions Based on More Than One Resgponse

3.2.1 Effect of correlations between responses

We have seen that the poor error rate in recognition
results from the large deviations of the individual responses
of each type from the average response of the same type. One
way of circumventing this difficulty would be to average
several statistically independént responses known to belong
to the same pattern class: the decision would be based on
the average response. It is well known that averaging K
statistically independent random variables reduces the vari-
ance by a factor of K.

The implementation of the averaging operation would
be rather difficult. This is so because the responses to be
averaged will have to be picked out at random points in time

from the EEG record, if they are to be statistically indepen-

dent. In other words, decisions cannot be made in real time.
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Real time operation would be a very desirable characteristic
of any practical scheme. V

If the decision is to be based on several consecu-
tive responses on the EEG record, we cannot afford to disre-
gard the correlations between them. A simple example in
Fig. 3.3 will illustrate the effects of positive and negative
correlations upon the decision-making process. Let us con-
sider the case where the two pattern classes are normally
distributed N(0, 1) and N(1, 1) respectively. x; and xp are
two successive measurements from the same class. It is
obvious that if x; and %, are positively correlated, two
measurements are not much better than one for discrimination;
whereas, if x; and xp are negatively correlated, they tend to
lie on either side of the mean and contain much greater
information than x; alone.

3.2.2. The algorithm

The algorithm is essentially the same as in the single
response case, except that the available set of features now
extends over K consecutive responses. Let these be denoted
by x(1), x(2), . . . , x(K), each being a N-dimensional vec-

tor. The NK X 1 vector of the difference in means is

u(l)
u(2)

u(K)
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where u(i) = Eo[x(i)] - Ep [x(i)]. The NK X NK matrix of

the sum of covariances is

Ck1 Cke

where each C is

® ° ° ClK

a-N X N matrix and

Ciy = Bpolx(i) ~ u(i)I[x(3) - u(3)1T + Eu[x(i) -

p(i)I0x(3) - w3117,

It is reasonable to assume stationarity in the sense that

and

O
{

i

H(l) =y

Cfi-y if 1> 7.

Now the distance measure becomes
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Co C1 C2 . . & CK_ 1\ 1 M
P -
C1 Co Cl e ® ® CK— 2 &
T T : T T .T
dNK = (E 'L_,; ° o ° E ) Cg C]_ CO @ e s CK... a8 °
T T
Ck-1 CK-2. - « Co =

It is easy to see that if all the C's except Co are zero
(that is, if the K consecutive responses are all statisti-

cally independent),

dyg = Kdy

and the discriminatory information contained in K consecu-
tive responses would be K times that contained in a single
response. However, in practice, because of the positive

correlations that exist between consecutive responses

dN < dNK < KdN'

The algorithm naturally favors those features which are least
positively correlated with the ones already chosen. The
significant features are picked out from one response at a
time as follows. The single-response algorithm is applied
to 5(1) and the optimum linear combination

T

i = o, (1x(1)
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is obtained. y; is now combined with x(2) to yield a (N + 1)-
dimensional pattern vector (y;, x(2)) for which the vector
of the difference in means is (a’ (1)u, y) and the matrix

—0opt.

of the sum of covariances is

] {
Efa” (1)x(1)]2 EE[QT(l)_}g(l)zT(Z)] = a"(Dcogiat(1e
TTTTTTT T T r———~—"~"""""7"7"77 =] | TTT T - """
E[x(2)x(1)Ta(1)| E[x(2)x(2)"] cfa(1) | co

The single response algorithm is again applied to produce
the best linear combination of the (N+ 1) features. The
process continues, the pattern vector always being of dimen-
sion (N + 1).

3.2.3 Results

In the actual application, the responses were discre-
tised into 20 values (N = 20) to facilitate étorage of sev-
eral correlation matrices (K = 40). Fig. 3.4 shows how the
distance measure increases and predicﬁed error rate (based on
a Gaussian model) decreases as more responses are used to
arrive at a decision. The actual error rate deviates some-
whaﬁ from the predicted one (unlike in the single response
case). Thus the Gaussian model may not be adequate to des-
cribe the joint distribution of several pattern vectors.

Fig. 3.5 compares the performance of this scheme to
the simple averaging technique using the same number of
responses and features. It is seen that the averaging

method performs poorly for small numbers of responses,
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but does better than the complex scheme when the number of
samples averaged exceeds 12. The explanation for this
phenomenon perhaps lies in the assumptions underlying the
two schemes. The averaging method requires that the density
function p[{x(i)] be independent of i. The more complex
scheme requifes that the joint density function of K respon-
ses,rpﬂz(i), x(i+1), . . ., x(i + K- 1)], be independent
of i, whigh is certainly a more stringent assumption (sta-
tionarity of higher order) which is less likely to be satis-
fied in practice. What is more, the order of stationarity
required increases as mofe responses are used to make a deci-
sion, and scme deterioration in performance is only to be

expected.
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CHAPTER IV

THE RANDOM PROCESS MODEL

4.1 A Preview

This section is written especially for those readers
who are interested in the EEG from a physiological point of
view. Only an intuitive feel of some concepts associated
with a random process, such as mean, variance, correlation
and power spectrum, is assumed on the part of the reader.

No mathematical details are given. Such readers are advised
to proceed directly to Section 4.5 after reading through this
section. One who is mathematically inclined can find all

the details in Sections 4.2, 4.3 and 4.4.

As pointed out in Section 1.4, the modelling effort
is motivated by the hope that by putting some structure into
the EEG data, more efficient feature reduction and classifi-
cation techniques might be developed. The EEG naturally
requires a statistical description, since it indicates the
combined activity of a large population of cells in the
brain. Technically, avgiven EEG record should be cénsidered
as a sample obtained from an underlying random process, and
efforts should be directed towards modelling this underlying
process. Any model developed should adequately explain
observed statistical propefties of the spontaneous EEG, such

as the behavior of the average signal and the autocorrelogram.



It should also explain the spectral properties of the spon-
taneous EEG, particularly‘the concentration of power in a
narrow band around the alpha frequency. Besides, the model
should be capable of being modified to.explain the change in
the statistical and spectral properties when the EEG is driven
by repetitive stimuli at the alpha freguency. The statisti-
cal and spectral attributes are singled out because they are
common to a large number of subjects. The statistical model
would not be expected to.explain peculiarities which might be
observed only infrequently.

It is necessary to examine some of the models pro-
posed in the literature for spontaneous EEG. A straightfor-
ward approach is to model the spontaneous EEG signal as a
narrow band Gaussian process. This model implies that the
sampled values of the signal obey a multivariate normal dis-
tribution in the statistical sense. Also, the correlation
between any two sampled values as a function of the interval
between the sampling instants should be such that the random
process has a narrow band spectrum around a central frequency.
Such a model can be termed 'linear' because it can be ob-
tained by linear operations (passing through a linear net-
work in a physical sense) on the most elementary random pro-
cess, namely, the white Gaussian noise (that is, a Gaussian
process with an ideally flat spectrum). The reverse is also
true; it is possible to extract Gaussian white noise from a

Gaussian narrow band process by a linear transformation.
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A more sophisticated approach is to perform an
amplitude and phase analysis of the EEG and try to give stat-
istical descriptions of thése parameters. This approach is
consistent with the physically appealing assumption that the
brain contains a large number of 'oscillators,' all of them
at the alpha frequency, but with different phase relation-
ships. The phase process is usually modelled as a linear
transformation of white Gaussian noise. The statistics of
the amplitude are not very important, especially for classi-
fication purposes, as will be seen in Chapter V. The model
is termed 'nonlinear' because of the nonlinear relationship
between the signal and its phase.

To the author's knowledge, there has not been an
attempt to extend any of the above models to the case of the
EEG driven by repetitive stimuli at the alpha frequency.

The proposed nonlinear model, which bridges this gap, is as
follows.

Let the EEG signal be represented by sin (w,t + 9(t)),

where the total phase is made up of two parts--(i) a non-
W

random part w,t due to the alpha frequency f, = > and (ii)
a random part 6(t). If the random part 6(t) were zero, the

total phase would increase linearly at a rate determined by
the alpha frequency and the signal would be a pure sinusoid
at the alpha frequency. The effect of the randomness
expressed by 8(t) is to make the signal deviate from its pure

sinusoidal shape and make it look like a random signal. The
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amplitude is assumed to be constant for simplicity.

Let us now turn to the statistics of the random pro-
cess 6(t). In the case of the spontaneous EEG, 8(t) is
modelled as a zero mean Brownian process. Now the Brownian
process 1s one of the most important physical random proces-
ses and has been studied in great detail. Imagine a particle
which can move along a straight line and which is initially
at the origin. At times At, 20t, 3At, . . . let the particle
be given displacements X1, Xz, Xz, - » « which are indepen-
déht and normally distributed with zero mean and variance 0.
After k such displacements the position of the particle is
gi&en by %X + X2 + » ¢« « + xx which has zero mean and vari-
ance ko. Thus it is seen that, even though the mean position
of the particle is always at the origin, the uncertainty in
its position, as expressed by its variance, increases linear-
ly in time. As At - 0, we can imagine the particle being
given continuous displacements and its position x(t) is then
defined to be a zero mean Brownian process. In general, the
initial position may also have an uhcertainty about the ori-
gin; its variance then merely adds to the variance of the
process at any instant. The Brownian process can be obtained
by passing white Gaussian noise through an integrating
network.

Reverting to the EEG signal, the effect of a Brown-
ian component in the total phase of the signal is to make the

uncertainty in the deviation from pure sinusoidal behavior



increase linearly in time. This is seen clearly in Fig.
4.1, which shows the actual phase histories of several short
lengths of spontaneous EEG. (The precise method of deter-
mining the phase is described in the next chapter.) The
uncertainty in the phase manifests itself as a dispersion of
phase values around the mean values represented by the
straight line corresponding to the alpha frequency. The
standard deviation of 6(t) increases as /E, which explains
the curvature in the lines showing the 1l - 0 bounds of phase
dispersion.

The restoration of phase coherence by repetitive
stimuli at the alpha frequency can be explained as follows.
The component 8(t) would still be a Brownian process between
any two successive stimuli. The stimuli, however, have the
effect of restoring the uncertainty to its initial value.

In effect, 6(t) is split into several Brownian processes,
which, however, are assumed to be correlated among them-
selves. The correlations are assumed to fall off in a geo-
metrical fashion. Fig. 4.2, obtained from an actual EEG
record with repetitive stimuli, shows how the phase dispér—
sion is controlled by the stimuli.

It is proved mathematically in Sections 4.3 and 4.4
that the statistical and spectral properties of the processes
described abovg correspond to the observea.properties of the
two types of EEG considered. The reader who is not interes-
ted in mathematical details should proceed in Section 4.5,

which compares the predicted and actual properties.
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4.2 Details of Earlier Efforts in Spontaneous EEG Modelling

4.2.1 The linear model [19]

The EEG is modelled as a sample from a'statidnary
Gauss-Markov process, which itself is modelled as fhe output
of a linear dynamical system excited by white Gaussian noise.
Under certain conditions, 1; can be proved [31! that the out-
put of such a system is asymptoticallv a stationary, Gauss-
Markov process. Moreover. such a process is uniquely deter-
mined by its first and second order statistical properties,
namely. the mean, u(t) = E x (t), and the auto-correlation
function, R(7) = E x (t) x (t + 7). Now it is only a ques-
tion of finding the proper dynamical system whose output has
u(t) and R(7) similar to the spontaneous EEG average signal
and autocorrelogram {shown in dotted lines 1in Figs. 2.3 and 2.4).

Considering a second order, underdamped dynamical

system driven by a zero mean, white Gaussian noise,
X + 200, % + w¥x = U < 1)
it can be proved that [31],

lim E x (t) = 0

t—*m

lim E x (t) x (t + 7) = ae~ % Tcos [w,”1-C? + o].

t—om

Asymptotically the random process x(t) will approach a
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narrow band Gaussian process. Now { and w, can be determined
to give the exact behavior required.

4.,2.2 Non-linear models

Wiener [32] postulated that the brain contains a
large number of 'oscillators,' all at the basic frequency
of the alpha rhythm, but with different phase relationships.
If we denote the activity of a typical oscillator by

a; sin (w,t + 8;), the combined EEG activity will be

x(t)

Zaf Sin ((.UaT + 91)
i

A sin (w,t + 06),

I

where

A2 = IE: ajy COs eilg -+ |Z ay sin 61!2* and
1
tan 6 = ? a; sin 81.
§'a1 cos B9,

It is obvious that only a statistical description can be
given for a; and 8;, which in turn leads us to model A and 8
as random variables. If, in addition, the phase relation-
ships vary with time, A(t) and 6(t) can be modelled as sto-

chastic processes. Thus,

x(t) = A(t) sin (w,t + 6(t))
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will be a process with random amplitude and phase.
modulation.

It is clear that the spectral behavior of x(t) near
the alpha frequency W, depends critically on the statistics
of the phase process 6(t). If there is any dominant fre-
quency in A(t), it would tend to shift the peak in the EEG
spectrum; but it would not materially affect the behavior of
the spectrum near the peak. In the literature A(t) has been
usually modelled as a constant.

Wiener [32] modelled the phase as a linear trans-

formation of the Brownian motion process
6(t) = ¢ [[ K(t + 7, t + To)dz(T,)dz(T5)

where z(t) is a Brownian motion. Under the assumption that
€ is small, he has derived the approximate spectrum of the
EEG and showed that it is similar to the observed spectrum.

More recently, Joseph et al. [33] have modelled the
frequency, rather than the phase, as a Gaussian random vari-
ablé, They assume that the eiementary oscillators aré not
all of the same frequency; instead, the distribution of fre-
quencies is Gaussian around the alpha frequency ®w,. There-
fore, the signal in complex form is

x(t) = aet®t where w ~ N(w,, 0%).
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Then,

E x (t) = agel"t
= Aeiw"‘te—é‘c’ztz (from the characteristic func~
tion of a Gaussian variable)
R (T} = Ex(t)x*(t + )
_ EAgeiwte—iW(t+T)
= a?Ee iUT

: 12,2
= a2 iWaT -30%T

- 2
The envelope of the average signal has a predicted e kt
behavior under this model. The authors note that experimen-
tal results support e—kt behavior. The power spectrum is

P(w) = i:Rxx(T)eindT

20g(w—wa)2

which is a Gaussian distribution of power around the alpha

frequency.
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4.3 Details of Proposed Model for Spontaneous EEG

The nonlinear model was chosen because it admits a
natural hodification‘for the case where the EEG is driven by
repetitive stimuli at the alpha frequency. The phase is
modelled as a simple Brownian motion, since it keeps the
mathematical analysis simple and seems to explain experimen-
tal facts adequately. The amplitude is modelled as a cons-
tant. It will be shown in the next chapter that, under cer-
tain reasonable assumptions, the statistics of the amplitude
are unimportant for classification purposes.

To keep the mathematics simple, the EEG signal is
represented in the complex form in the analysis which fol-
lows. Some familiarity with characteristic functions is also
assumed. A reader who so desires can read a short exposition
of these concepts in the Appendix.

4,3.1 The model

We suppose that the (normalised) spontaneous EEG sig-

nal is represented in complex form as
x(t) = ei[wat+6(t)]

The random phase 08(t) is modelled by the Brownian process [34],

o
8 = w
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where w is a zero mean Gaussian white noise with

Ew(t) = 0

Ew(t)w(T) = gb(t - T).

It remains to specify the initial uncertainty in 8. We

suppose that 06(0) is also Gaussian with

E6(0) = O

Var 6(0) = po .

With these assumptions, 0(t) will be a Gauss~Markov random

process with

E6(t) = O
Var 8(t) = po + gt
E6(t)8(T) = po + gt for 7 > 0.

The variance of the phase increases linearly with time,
implying gradual loss of phase coherence.

4.3.2 The predicted average signal

The average signal and the autocorrelogram, as com-
puted from any sample of a random process, are themselves

random functions. The model can only predict the expected
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values and variabilities of these estimates.
The average signal, as computed from an EEG record

whose length is equal to N periods of the alpha frequency,

is
1 N-1
uN(t) =% I x(kt, + t) 0 <t =< t,.
k=0
Therefore,
1 N-1 iw, t+ib (kt, +t) (since w,t, = 2m).
EuN(t) == Y Ee ® 8 a’™a
N x-0

Now 6(t) is Gaussian with zero mean and variance po + gt,
and hence has the characteristic function [35]

. 1
pel®V - 75 (Po+qt)V®

Therefore, setting U = 1 in the above formula, we obtain for

EuN(t)

1 eiwate-%(po+qkta+qt)

EuN(t)
0

1
2 -
™M

k

1 .
e‘g(po+qt)e1mat

= Ay

1
-l l—e_Eth*

: 1 t

where AN = =g 29%a
: N l—e_ §qta

showing that the expected average signal is an exponentially

decaying oscillation. Since AN is O(%J, the model predicts
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that the average signal falls off to zero as greater lengths

of EEG are used in computing it, which is supported by

kt

experiments. Also to be noted is the e~ behavior of the

kt?

average signal, compared with the e~ behavior predicted
by the model proposed by Joseph et al. [33]. The Gaussian
assumption is perhaps more valid with the phase rather than
the frequency.

The variance of the estimate is derived in the

Appendix.

4.3.3 The predicted autocorrelogram

. . 5
Rxx(t’ t + 7) = Eel(wat+9(t»e ilw, t+w, T+6 (t+7))

~iw, T, i8(t)=-if(t+T)
e e .

E

Now 8(t) and 6(t + 7) are jointly Gaussian with zero mean

and covariance matrix (for T 2 0)

Po +qt Po +qt

Po + gt Po + at + qT

Therefore, the joint characteristic function [35] of 6(t)

and 6(t + T) is

Eelf(t)U +i8 (t+T)u, - e—%[(po+qt)U$+2(po+qt)ulu2

+(po +qt+qTIVE].

Setting v; = 1, U, = -1,
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. = l
Rexlts t +7T) = e tWaTe 5 [po +at—2po —2qt+po +qt+qT]

. -

= RXX(T),

The process x(t) is not stationary in the wide sense since
Ex (t) is not a cbnstant, However, since the autocorrelation
function is only .a function of T, the autocorrelogram RN(T)
continues to be an unbiased estimate of'Rxx(T), Hence,
ER (T) = R__(T) = 10 T BT,
XX

The variability of this estimate is derived in the Appendix.

4.4 Details of Proposed Model for EEG with Repetitive

‘Stimuli at the Alpha Frequency

4.4.1 The model

As discussed in Chapter II, repetitive photic -stim-
uli at the alpha frequency lead to recovery of phase coher-
ence. The mathematical model can reflect this in the fol-
lowing way. Each stimulus, occurring at instants t,, 2t,,
3ty,, « . . is supposed to reset the variance of the phase

(not the phase itself) to its initial value po. That is,

var 8(0) = var 6(ty) = var 8(2tf) -+ + + = pg.
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The dynamics of 6(t) between the photic stimuli is unaltered;
8(t) continues to be a zero mean Brownian process. In ef-
fect, the stimuli occurring at t,, 2t,, . . . split the ran-

dom process 6(t) into a vector of Brownian processes

9, (t)
0z (t)

where 6, (t) = 6[(i - 1)t, + t].

GN(t)

The statistics of each component 8, (t) are determined by the
Brownian model as before, namely,
91 = Wiy Eei (0) = 0, var 91 (0) = Po

Ewy (£) = 0, Ewy (£)w, (T) = qby,8(t — T)

To specify the vector process completely, we also need the

covariance matrix of the initial values. We assume
Eei (O+)e‘1 (0+) = poa‘i-"[ »
The process thus described is periodically stationary with

period t, in the sense that the statistics of the process

are invariant with respect to a translation by a multiple of
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plx(ty), x(tz), . . . , x(t,)] = plxlt, + kt,_),

x(tpg + kt,), « . . , x(t, + kt,_ )]

for any integer k.

4.4.2 The predicted average signal

Now the random variables x(kt, + t) for k = 0, 1, 2,
« « +« 3 N - 1 have all the same distribution. Hence,

BEu (£) = pell®W.t+8(t)]
TN

which by similar reasoning as in section 4.3.2

- eiwate-%‘qt°

Therefore, the expected average signal is an exponentially
decaying oscillation, whose amplitude is independent of the
length of the EEG record used in computing the average.

Thié is borne out by experimental evidence. The variance of
this estimate is derived in the Appendix.

4.4.3 The predicted autocorrelogram

I

Rxx(t, t + T) Ex(t)x*(t + T)

_ Eei[wat+e(t)]e—i[wat+w37+e(t+T)]
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-iw, T

- e Eeie(t)—ie(t+7),

i8(t)-i6(t+T)

Now Ee depends on the relative positions of the

instants t and t + T on the EEG record. Without loss of
generality, we can assume 0 S t < t, because of the periodic
stationarity of the process.

(i) If 0t + 1< +t,, then

E|6(t)]2 = po + gt
ES(t)B(t + T) = po + gt
E{8(t + 7|2 = po + gt + qT.

Therefore, from the joint characteristic function of 6(t)

and 6(t + 1),

pelf (£)-18(t+T) _ -5 (po+qt-2po-2qt+po+qt+qT)

1

= e z—qT L @ L] e ° a @ ] L] L] * L) (4.1)

(ii) If mt, St + T < (m+ 1)t, (wherem =1, 2, 3, . . )

E|o(¢)]?

Po + qt
EB(t)8(t + ) = EB(0*)8(mtt) = a’po

E|8(t + )| = po + q(t + 7 - mt,).
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Thus we have

. ,
Eei@(t)—iG(t+T) - e';(po+qt—2ampo+po+qt+qT—qmta)

1
— — n - — — |
e~ (1-a )poe za (T mt“)e at L (4.2)
and the autocorrelation function is no longer purely a func-
tion of the delay T. However, the autocorrelogram defined as
1 T
= - *
RT(T) T Ox(t)x (t + T)dt
performs a smoothing operation with respect to t and gives
the result purely as a function of the delay T. In practice,
the autocorrelogram is computed from a length of EEG record
equal to N periods of the alpha frequency

Nt
=
R(m) = g J, x(0)x*(t + mat.

The expected value of this estimate will now be derived.

(i) 0 <1< ¢t,.
Nt,
ER (T) = =i— [ "Ex(t)x*(t + T)dt
N NE, Jo :
The integral can be split up over ranges (0, t, - T), (t, -

Ty tg)y, (tg, 2t, = T), (2¢, = 7, 2t,.), . - . , ((n - L)t,,

nt, - 1), (nt, - 7, nt,). The alternate integrals are all
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equal by periodic stationarity of the process. Therefore,
ta—T
ER_(T) = - [I "B (t)x*(t + 7)dt +
RN =t o b 4 X
t

[ Ex(e)x*(t + m)ae].
t,—T

a

In the first integral t and t + T are such that equation
(4.1) applies; whereas in the second integral t and t + T

are such that equation (4.2) applies with m = 1. Hence,

ERN(T) = & [Io e 2Te7 29T g4 4
a
o _-(1-t)po_-qt _-Fq(r-t,) ~iw,T
e Po —q e 29 2 e 2 Tat]
t,-T
= [(1 - EL) + A, sinh (-J; qT)]e-lwaT
a 2
-1 t
where 3, = e—Po(l—a). e 2dta
. T .
(ii) kt, < 7 < (k + 1)t,.

Using periodic stationarity again, we can write

1 (k+1)t, -1
ERy (1) = & [[ Ex(t)x*(t + T)dt +
ta
[ Ex(t)x*(t + T)dt].
(k+1)t,-T

Now in the first integral t and t + T are such that equation
(4.2) applies with m = k: whereas in the second integral the

same equation applies with m = k + 1. Therefore,
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(k+1)t, -7 k 1
ERN(T) - "_El_ [IO 8 e"‘(l'—a )poe"'qt-e Qq('r—kta)
a
e W Tar +
ta -(1-a**1)py —qgt ‘lq(T—(k+l)t )
e Oe q e 2 a
(k+1)t, -7
e—lwaTdt]

= (& sinh [€ ((k + 1, = 1) ] + Acs

sinh [% (r - kta)]} eI T

-1
e—(l—a’)po. e 29t.

where A, = v
qt,

1
As k = ®, Ax, Ax4; — A, = e Po ., EL%%Ei . Therefore, the
a
éxpected autocorrelogram is asymptotically periodic with
period t,. This should be contrasted with the exponentially
decaying oscillatory behavior of the autocorrelogram of

spontaneous EEG.

4.5 Comparison of Predicted and Actual Results

In this section, the validity of the model will be
checked by comparing the behavior of actual EEG records with
the behavior predicted by the model. One such comparison

was already made in Section 4.1 where the phase dispersion
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obtained in actual EEG records of the two types was matched
against the variance predicted by the model. It is well
known that a Gaussian random variable would lie, 68.3% of
the time, within one standard deviation of its mean. This is
the significance of the 1 - ¢ bounds in Figs. 4.1 and 4.2.
Now the EEG signal itself is a nonlinear function of
its phase. Given the stochastic behavior of the phase, the
stochastic behavior of the signal can be derived in principle.
The mathematical analysis in Sections 4.3 and 4.4 was direc-
ted towards investigating the predicted'behavior of two stat-
istical attributes of the EEG signal, namely, the average
signal and the autocorrelogram. (Or, equivalently, the
power spectrum.) For those who did not wish to go into mathe-
matical details, the results are briefly recaptured here.
The figures show the actual behavior in solid lines and the
predicted behavior in broken lines.
If the model holds exactly the following are the
predicted results. The average signal for spontaneous EEG
is an exponentially decaying oscillation, with its amplitude
falling off as % as more responses are used in computing»it.
(Fig. 4.3). With repetitive stimuli, the behavior is the
same except that the amplitude becomes independent of N
(Fig. 4.4). 1In other words, the average signal shows a dis-
tinct oscillatory behavior if sufficient'responses are used
in computing it.

The autocorrelogram of spontaneous EEG is
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exponentially decaying at a rate proportional to the rate at
which the variance of the phase is increasing, and osCiila—
tory at the alpha frequency (Fig. 4.5). With repetitive
stimuli, it is still oscillatory at the alpha frequency.
However, the amplitude, though it decays for small values of
the delay, soon reaches a steady asymptotic value. Thus the
autocorrelogram asymptotically becomes periodic (Fig. 4.6).

The power spectrum of spontaneous EEG behaves as

L = near the alpha frequency w,, showing that the
(w-w, )2+ ,

4
bandwidth is equal to g, the rate at which the variance of
the phase is increasing (Fig. 4.7). With repetitive stimuli,
a spike will appear at the alpha frequency, because of
asymptotic periodicity of the autocorrelogram (Fig. 4.8).

The figures show that the behavior of actual EEG

plots is in good agreement with the predicted results.
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CHAPTER V

FEATURE REDUCTION AND CLASSIFICATION BASED ON THE MODEL

This chapter describes how an amplitude and phase

analysis of the EEG record is carried out. The phase values

are then used to develop a feature reduction and classifica-

tion scheme based on the Bayes decision rule.

5.1 Amplitude and Phase Analysis of EEG

5.1.1 Concept of the analytic signal

Gabor [36] first introduced the concepts of the
instantaneous amplitude and the instantaneous phase of an
arbitrary, continuous, real signal x(t). He did this by

defining a complex analytic signal z(t) associated with the

real signal x(t). The signal x(t) is expressed as the real
part of the analytic signal z(t). This is a generalisation

of the relation for pure harmonic signals, namely, cos wt =

Re éiwt

The imaginary part y(t) of the analytic signal z(t)
is termed the gquadrature signal. (That is, the signal in
quadrature to the in-phase signal x(t).)  If the relation

between the in-phase signal x(t) and the quadrature signal
y(t) is specified, then the analytic signal z(t) can be

uniquely determined from a knowledge of either x(t) or y(t).



It can be proved that, if x(t) and y(t) are defined to be a

Hilbert transform pair [37], that is,

1 ® x{T)
y(e) = 5B [ $ogar
(5.1)
1 ® y(t)
x(t) = -2 P [ L=t ar

(where P denotes principal value)

then, the following desirable properties can be proved [38].

(i) If x(t) = cos wot then y(t) = sin wet

(ii) The Fourier transforms of x(t) and y(t) are connected
by
Y(w) = - iX(w) sgn w.

In other words, x(t) and y(t) have the same power
spectrum.

(iii) From (ii), Z(w) X(w) + i¥(w)

= (1 + sgn w)X(w)
showing that the Fourier transform of z(t) vanishes
for negative frequencies.
(iv) The one-sided nature of z(w) implies that, z(s)

defined by inverse Fourier transformation

z(s) = Imz(w) eiwsdw
0
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is an analytic function of the complex variable s.

(Hence the name 'analytic signal.')

Now the analytic signal can be expressed in phasor
form as

ip(t) (5.2)

z(t) = A(t) e
A(t) and o(t) are then defined to be the amplitude and phase
respectively of the real signal x(t) at the instant t.

5.1.2 Practical considerations

From equation (5.1) it is clear that generation of
the quadrature signal y(t) involves a non-causal operation
on the in-phase signal x(t). That is, computation of y(t)
requires knowledge of future values x(T), T > t. Theoreti-
cally, the entire EEG record is needed to compute the phase
at any given instant. However, if we are willing to filter
out frequencies outside a certain band from the EEG signal,
the above requirement can be relaxed, as will be shown
presently.

Such filtering is desirable from the practical view-
point also. It is desirable to filter out high frequencies
because any spurious high frequency 'noise' can throw off
the phase value by multiples of 2m. It is also desirable to
filter out very low frequencies to eliminate any bias which
might have been introduced into the signal during recording.

Since we are mainly interested in frequencies around the
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alpha frequency (approximately 10 c¢/s), a bandpass of 0.2 -
50 ¢/s was used in practiéea It is necessary that both the
in-phase and quadrature signals be subjected to filtering in
order to maintain the relationship between their Fourier
transforms. If we work with the digitised EEG record, we
have to construct two digital filters—-an 'in-phase filter'
and a 'quadrature filter.' Remembering the relationship

between the Fourier transforms of x(t) and y(t), namely,

iv(w) = X(w) sgn w,

the ideal in-phase and quadrature filters would have charac-
teristics as shown in Fig. 5.1.

In practice, the rectangular characteristics are
approximated by a series of triangular filters [39, 40] as
shown by broken lines in Fig. 5.1. If e(i) are the sampled
values of the EEG signal, it can be shown [39] that the fol-
lowing operations represent the approximated in-phase and
quadrature filters—-

x(k) = 3§ aje(k + 3j)

(5.3)

X Dbye(k + 3j)

j=-n

y (k)

where the numbers m, {aj}, and {bj} depend on the number and

shape of the triangular filters used and can be precomputed
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and stored. It is thus seen that the generation of filtered
in-phase and quadrature signals involves computation of two
finite, moving, weighted averages. It is necessary to store
(2m + 1) sampled values at a time. The filtered signals are
obtained after a delay of mAt, At being the sampling interval.
Once the sequences {xx} and {yx} are computed, the

amplitude and phase are given by

ak) =7 |xx)|2+]yx) |2

i

(5.4)
ol(k) = arc tan (y(k), x(k))

It might be thought that the phase is determined only to
within a multiple of 27. However, if the sampling rate is
chosen to be equal to the Nyquist rate for the highest fre-
quency present in the filtered signal, then any two success-
ive phase values ®(k) and ®(k + 1) can differ at most by T.
This fact determines all phase values uniquely in relation
to the initial phase value ©(1), which is taken to be in the
range (-m, ).

Finally, the sequence 6(k), which is the random part
in the phase, is obtained by subtraction of the linear part

due to the alpha frequency w,.
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5.2 Bayes Decision Rule Based on the Model

5.2.1 Derivation of the likelihood ratio

Let us suppose that an amplitude and phase analysis

has been carried out on alength of EEG record equal to

k

periods of the alpha frequency. Let the sequence of ampli-

tude and phase values be {A(i), i =1, 2, . . . , kN} and

{6(i), i =1, 2, . . . , kN}. Here N is the number of
pled values in one period of the alpha frequency. The
stimuli, if present, are assumed to have occurred just
the instants 1, N + 1, 2N + 1, . . . , (k - 1)N + 1.
Let the null hypothesis H° be that the stimuli
not present; that is, the EEG record under examination
the spontaneous type. A discrete version of the model

spontaneous EEG is

91.’.1 = ei + Wi i = l, 2, o ° ° 9 kN - l

where w; is a purely random Gaussian sequence with

E(Wi) = O, E(WiWJ) = q&i"

and the initial uncertainty is Gaussian expressed by

E(8,) = 0, E(62) = po.

sam-—
k

before

were
is of

for
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At this point, we make the assumption that the amplitude

sequence {A(i)} and the phase sequence {6(i)} are stochasti-

cally independent under either hypothesis.

Thus,
p(Ar, A2y, « - . , Akn, 01, 627'°'7GKN‘H1)‘
= p(Ay, Bgy « » « 5 Bey |HIIP(B1, 65, « - « , By |HY),
i=20, 1. (5.5)
Now from the Markovian nature of the process,
p(61, B2, « . . R ekN|HO)
= p(ekN‘ekN-ls HP)P(ekn—l‘ekN~2: ) . ..
p(6,16,, HO)p (B |HC).
It is seen that
log p(el, 93, s e s 4 ekN‘I’IO)
_ 1 kN s 0,2 kN-1 1
= —-é—q— 12 (ei - 91_1) - 2Do - ( 5 ) lOg 21ngq —-i-log 2TPo »
=2
(5.6)

Let the alternative hypothesis H' be that the stimuli
were presented just before instants 1, N + 1,

2N + 1,
(k - 1)N + 1.

9
In this case we have the discrete version of
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the model for EEG with repetitive stimuli as

61+1=91+W1 i=l’2,eou,N_l’N+l’
N 42, « o« o o 2N =1, . . .,
(k - 1)N + 1, (k = 1)N + 2,

@ L] e 3 kN_ l

with E(wy;) = 0, E(wywy) = gb,y,

so the B sequence between any two successive stimuli is a

random walk sequence with initial uncertainties given by

E(63N+1) = O, E(G?m.l) = Po J = O, l, 2, o e s o

(k - 1)
and the initial phase values are geometrically correlated as
E[Byns1 03 'Ner ] =pooc|5-3'l. (5.7)
Now we can write»

p(O1, B2, « « « , Bkn|H') = p(Oun|Bkn-1, Bxn-z,
s e s g 61, Hl)’p(ekN_l‘ekN-g, ekN_,g, o e o 4 91, H!)

. . . p(Bsl8s, 6,, H )p(65]08,, H ) p(, |H). (5.8)



All the conditional densities except those of 8;, Ons1,

BaNt1s o o o 5 B(k-71)N+1 follow by the random walk model as
before. The exceptional cases will have to be evaluated from
the geometrical correlation model expressed by equation (5.7).

These conditional densities are of the form
p(93N+1|GJN, GJN_l, o o o ,.61, Hl), j=l, 2, o & ,k—l.

As explained in Chapter IV, the model assumes that the stim-
uli split up the phase process into several Brownian proces-
ses, with the initial values correlated geometrically as in
equation (5.7). Therefore, it is clear that the conditional
density of 8,y+1 given, the past values depends only on other
initial values O(y-1)n+15 O(y-2)N%¢15y « - =+ 5 Oy+1, B and

not on the intermediate values of the phase. Therefore,

p(eJN+1|eJN9 GJN-lv « - ., By, HY)

= p(eJN+1‘e(J—1)N+19 6(3—2)N+17 e o o 5 Bns1,y B1y H' ).

Under the geometrical correlation model, the conditional
density on the right hand side can be proved to be normal
with mean a8(,-1)y+1 and variance (1 - a®)po (a proof is
given in the Appendix).

Substituting everything into equation (5.8) it will

be seen that
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log p(8;, 62, = - . , Bky|H!) = —-%a 5§1:§5?1{38151)2
~ §7T:é775; jgi(ejN+1 - aB(y-1Ine1 )% - gt;

- Ei%fil log 2ng - % log 2mpo

- E%l log 2m(l - o2 )pe (5.9)

Now the likelihood ratio is

pla;, Apy, - . . , AkN]HO)P(91s B2, « « « ekN‘Hp)
P(A1, Az, « « « 5 Agy |H)P(B1, 62, « « « , 8, |H)

Here we make the assumption

P(Ar, Az, « « « 5, By |H°) = p(By, By - « « 5 Agy |HY).

(5.10)

That is, the stimuli do not affect the statistics of the
amplitude, but only those of the phase. Then the log-

likelihood ratio becomes, using (5.6) and (5.9),

log p(917 93, s e o GkN|H°)

- log p(0y, 63, . . . , By, |H)

1

1 (BJN"'I - GJN )2

1 14
2q

g

-

k=1
t 21— )po JEl(esuu - aB( y-1yy+1)?
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k-1 (1-a? )po
+ 55= log ———Fo. (5.11)

\

5.2.2 Sufficient statistics and feature reduction

Let
k-1
t = Z (Bynsy = B3y)%
J_
k-1 .
tz = T B85n+2
1=1
tg = J; 6(3-1)N+1
k-
ty = Z Oyn+108( -1)n+1

=1

Then the Bayes optimal separating surface, which is obtained
by setting the log-likelihood ratio in equation (5.11) to

zero, is

[—'gg].tl [Z(l-ag)po] "te 4 [(l az)po] "ts

(5.12)
2
— k-1 (1-a®)po _

Therefore, the decision regarding the classification of the

given EEG record is based only on the four numbers (t,, tp,

tz, ts) which are functions of the phase sequence {8(i),

i=1, 2, . . . , kN}. From the optimality of the Bayes
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decision rule, it can be claimed that, if the model holds
exactly, complete knowledge of the sequence {G(i)} cannot
improve the average error probability. In this sense, the

functions (t,, tz, ts, ty) can be termed sufficient statistics

for classification~-that is, they carry all the information

needed for classification purposes.

The nonlinear map given by

/
8, t
02 tz
» - ta
ek N t4

achieves considerable feature reduction. The following

points are worth noting.

(i) If the model holds exactly, no discriminatory infor-
mation is lost by the above mapping.

(ii) The dimension of the transformed pattern vector is
four regardless of k, the length of the EEG record
used.

(iii) The separating surface is linear in the transformed
pattern space.

(iv) The sufficient statistics are functions only of the
phase values immediately preceding and following
the presentation of a stimulus. Since the dynamics

of the phase process are the same under H° and H?,



the intermediate phase values carry no discriminatory
information.

(v) ‘The sufficient statistics are in the form of cumula-
tive sums, which can be continuously updated as more
data becomes available.

(vi) From equation (5.12) it is seen that the separating
hyperplane moves parallel to itself as more data
comes in, but its orientation remains unchanged.

(k, which affects the threshold, appears only in the
constant term.) Once the orienfation is determined
by learning the unknown parameters (see 5.2.3) the
decisibn can bhe taken after observing any desired
length of the EEG record, depending on the reliabil-
ity required.

5.2.3 Estimation of unknown parameters

Three unknown parameters (po, q, @) appear in the
model. The coefficients of the separating hyperplane (5.12)
are functions of these parameters. Two essentially differ-
ent approaches can be taken in the estimation of these
parameters.
(i) Since we are really interested in determining the
separating surface, rather than the parameters themselves,
we can take advantage of the linearity of the separating
surface in the transformed pattern space. There are several
algorithms [1] available to determine the separating hyper-

plane from training patterns of known classification.
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Several short lengths of EEG record of known classification
would be needed. Only thé sufficient statistics (t;, ta, ta,
t, ) would be used from each of them to fit a separating
hyperplane in the transformed pattern space.

(ii) The problem can be treated in the general framework
of estimation (identification) of parameters in dynémical
systems. For example, equation (5.6) can be used to obtain
maximum likelihood estimates [41] ﬁc and & from the phase

values of a spontaneous EEG record as follows. Solving

simultaneously
3
-s-b—o—logvp(el, 92, ¢« s o o GKN{HC’) =0 and
o
EElng(el, Gg,...,GkN‘HO)=O

we obtain

ﬁo = 912 and

1 kN 2
= m 152(61 - 61_1)

e

as maximum likelihood estimates of po and q.

Similarly, from equation (5.9), phase values of an
EEG record with repetitive stimuli can be used to obtain
maximum likelihood estimates of pp, g, &. Solving

simultaneously,



o) .
Seo 109 P81, B2y « - ., By |[HY) =0
-S%log p(61, 82y » « . , GkNlHl) =0 and
0
=5 log p(81, 82, . . ., Bxy |HY) = O
we obtain for g
; 1 % (8, - 8,040
9= Xm-I) j=1 1=cg-trneat™?
@ is to be obtained from
~ Aa -—A ~ -~
ay—'ﬂ—]]z—-ggg= (1 -~ a®)(c - aD) and
~ C-aD
Po = =%
a
where
k=1
V=a§ 8% v+t
k-2

1

C = 3_219(3-1 yn+1 B e

5.3 Results

The method was tested on EEG data obtained from two
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different subjects. Subject A had a greater percentage of
alpha activity than subject B. Here the percent alpha acti-
vity is defined as the percentage of the record for which the
instantaneous frequency lies within a specified narrow band
around the alpha frequency. The Nyquist rate for the filtered
signal is 100 per second; therefore, there would be 10 phase
values in one period of the alpha frequency (N = 10).

For subject A, the estimated parameter values were

ﬁo = 3.0 'radiang

= 0.3 radian®

Q>
I

0.8.

Q>
!

The separating hyperplane obtained from these values agreed
reasonably well with the one obtained by a regression

method [42]. Fig. 5.2 shows the error rate vs. the length

of the EEG record on which the decisions were based (solid
line); it is compared with the error rate obtained by the
nonparametric method in Chapter III (broken line). The error
rate was less than 5% when the decisions were based on 20
periods of the alpha frequency. The training and test sets
were separated by about two minutes of EEG record. For sub-

ject B, the estimated parameter values were

Po = 3.4 radian®
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0.35 radian®

Q>
]

Q>
i

0.65.

The separating hyperplanes obtained by the two methods were
again in reasonable agreement. Fig. 5.3 shows the error
rate and compares it with that obtained by the method in
Chapter III. In this case, the decisions have to be based
on 40 periods of the alpha frequency before the error rate
falls to 5%.

It is seen that for very short lengths of EEG record,
the nonparametric method performs better. Perhaps this is
because the nonparametric method makes fewer assumptions on
the data--only periodic stationarity in the wide sense is
required. However, as the length of the EEG record increases,
even this assumption becomes harder to meet in practice and
probably becomes as much 'off the mark' as the assumptions
made by the model. This would explain why the error rates
produced by the two methods approach each other in the 5%
range.

Both the methods perform better on data obtained from
subject A than on data obtained from subject B. Also, for
short lengths of EEG record, the discrepancy in the perfor-
mances of the two methods is larger for subject B. The
model-based approach is more sensitive to large deviations
from the alpha frequency than the nonparametric method.

However, in the 5% range of error rate, which is of practical
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interest, the methods perform equally well. The computa-
tional simplicity of the model-based approach gives it a

decisive advantage.
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CHAPTER VI

CONCLUSIONS, POSSIBLE DIRECTIONS OF FURTHER RESEARCH

-

6.1 Conclusions

The feature reduction methods available so far in
the literature may be considered to be of the statistical
type. These methods consider the different pattern classes
as statistical distributions in the N-dimensional feature
space. In general, those features which have a high statis-
tical correlation with the variable describing the category
of each pattern are attempted to be singled out. Specifical—‘
ly, those features which minimise the probability of misclas-
sification in a statistical sense are sought. |

Let us first consider the difficulties inherent in
the statistical approach. The probability of misclassifica-
tion is hard to compute in all but the simplest cases.
Therefore, efforts were directed towards formulating other
statistical measures, like entropy and distancelmeasures,
which could conceivably be related to the probability of
misclassification, and at the same time would be easy to
compute. Blackwell [10], however, showed that no single
measure can be explicitly related to the probability of mis-
classification. For this reason, the author feels that it
would be wrong to expect any greatly simplified feature

reduction method to be developed from the statistical approach,
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Moreover, the statistical approach is,vat present,
restricted to considering a subset or linear combinations of
the totality of all available features. This fact makes
efficient feature reduction very much dependent on efficient
feature selection. If the original features are carelessly
chosen, there is just no way of picking a 'good’ sﬁbset or a
'good’' linear combination. This points to the basic flaw in
statistical feature reduction--there is no link between fea-
ture selection and feature reduction.

To be sure, the approach has its advantages. The
nonparametric methods, in particular, are completely general
and can be put to work on almost any body of data to be clas-
sified without regard to where it came from. The author,
however, doubts whether such complete generality is necessary

or even desirable in any given specific application. Take,

for example, the EEG data. There has been a great deal of
research done on EEG by researchers in various fields from
different points of view. When we come across a pattern
classification problem involving EEG data, are we to ignore
the results of this past research and take a purely statisti-
cal approach? Probably not. As another example, we can con-
sider the problem of identifying the occurrence of different
kinds of seismic phenomena from observed seismological data.
Here again it would be wiser to take into account the mechan-
ism which generates the déta than to take a purely statisti-

cal approach.
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This leads us to what may be termed the model-based
approach. The relevant, known results on the body of déta
under consideration can be used to formulate a plausible
mathematical model. (Random process models are especially
suited to the case where the pattern features form a temporal
or spatial sequence.) It is important that the mathematical

- physical -
model have some basis. Or else, the mathematical model would
not be much better than fitting a statistical distribution
to the data. If the model is reasonably good, it would tell
us what features or attributes to look for (the phase vélues
in the case of the EEG signal) and thus achieve feature sel-
ection. In addition, if the model is reasonably simple, it

would admit a vector of sufficient statistics whose dimension

is low enough so feature reduction is also accomplished.

6.2 Possible Directions of Further Research

(i) It was seen in Chapter V that the error rate obtained
by the model-based approach is somewhat higher than that
obtained from the non-parametric method, especially for short
lengths of EEG record. It is possible that, by modelling

the phase process in a different way, a better fit to the EEG
data might be obtained. For instance, we can introduce
damping into the Brownian process via

6 + ab (a > 0).

il
g
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The phase dispersion can then be made to approach an asymp-
totic valuee instead of increasing linearly. By having a
larger damping in the case of EEG driven at the alpha fre-
quency, a smaller phase dispersion can be realised. ‘It would
be interesting to find the predicted statistical behavior of
the EEG under this model end its performance in classification.
(ii) In this thesis, we have concerned ourselves with only
one type of photic étimulation, namely, equally spaced stim-
uli at the alpha frequency. A possible line of further
‘research is to modify, and investigate ihe behavior of, the
model for other kinds of stimuli. Firstly, the effect of
repetitive stimuli at frequencies other than the alpha fre-
quency has to be investigated. The stimuli which are presen-
ted to the brainbin a realistic situation are, however, not
repetitive in nature. As the next step in generalisation, we
can consider stimuli presented at random instants, which have
some assumed statistieal behavior. Finally, we can consider
stimuli which are not instantaneous, but instead are contin-

uously modulated.
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APPENDIX

A.l1 Description of Data

The EEG record of ten minutes duration from each of
two subjects was obtained through NASA-ERC, Cambridge, Mass-
achusetts. The recording was done on each person in a single
sitting from a pair of electrodes located in the left
occipital-parietal area. The two kinds of EEG signal are
generated as fbllows. Stroboscopic light is flashed into
the eye of the subject through closed eyelids, and it is
tuned to the frequency of his alpha rhythm, which is approx-
imately 10 c.p.s. Thus a flash occurs once every 100 milli-
seconds approximately. The stroboscopic light is periodically
blocked so it does not reach the eye of the subject. Thus the
entire EEG record is split up into groups of two kinds of res-
ponses-~spontaneous and driven at the frequency of the alpha
rhythm. The on and off periods each last for about 25 sec-
onds. For general experimental conditions see Anliker [43].

The EEG data was first recorded in analog form on a

3-track FM tape as follows.

i)

ii)




iii)
oN ]
______ ofF

i) is the EEG record itself.

ii) is a square wave at approximately 10 c.p.s. At
every leading edge of it, a stroboscopic flash
occurs.

iii) is an 'on-off' waveform which indicates whether or

not the light from the stroboscopic flash is reaching

the eye of the subject.

To facilitate digital computer work, each of these
waveforms was discretized by sampling every millisecond. It
is seen that waveform (ii) serves only as a timing reference.
Between two successive stroboscopic stimuli, we would have
approximately 100 sampled values. In practice, it was found
that the number sometimes exceeded 100 due to drifts in the
strpboscopic frequency. For the work described in Chapter
IITI, it is necessary to have pattern vectors of uniform dim-
ension. Therefore, only the first 100 values were retained.
Waveform (iii) contains only 'on-off' information. A number
1 or 0, depending on whether the subject éees the strobosco-
pic flash or not, was augmented to the 100 dimensional vec-
tor. This vector of 101 numbers contains all the informétion

for the work in Chapter III.



For the amplitude and phase analysis, it is necessary
to retain all sampled values in the sequence of occurren;:e°
The timing reference information and the 'on-off' information
are then stored separately.

For the benefit of anyone wishing to make use of the
data, they are available on 9-track magnetic tapes for use

on IBM 360/65. The format used is (4XI4, 4X15I4, 5(/4X1714)).

A.2 Properties of (d;+1 - 4, )

In Chapter III, the following properties were claimed

for the distance measure defined as
ad= (W - u)T(® + D)1 e - )
(the reader is referred to Chapter III for notation).

(1) Adding one more feature can never worsen the discrim-

inating capacity of the features already chosen.

dp+1 — Gy = 0.

(ii) If Xn4+1 is a linear combination of X;, Xz, o o o o X

plus a noise term, then

Gr+1 — d = O,
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(iii) If the two classes are singularly distributed in
(n + 1) dimensional space on separate, parallel

hyperplanes, then

dher1 — dh = ®.
. I
(iv) Hn+1—CZ u:E[xn+1‘x1=X2=o e o = Xy =O]
Ty
Op#+1 — CZ7'C = Var [Xn+1|x19 Kay o o o 5 XgJo

The proofs are given below.

z C = C
(i) det = det

cT Op +1 cTcTs1y Op +1 —cTs-1c

by elementary row operations

z C
det

0 Oy +1—CTZ-1C

(0,47 - CTxic)-det T

expanding in terms of the last row.

Now,

PX C :
det 2 0, det £ 2 0, since both are

T
C On +1

covariance matrices. Assuming X nonsingular,



Op 1 — cTs-1c 2 o. Q.E.D.
(ii) Letx,,.,.;_ =_B__}E+€

where ¢ has mean €, variance v, and uncorrelated
with x.
(o] -
Then Uy+1 = BW + €
1
My+1 = B

(o]
Therefore, MUp+1 = Hp+1 — Hp+1

1) (A.1)
041 = BT + v

1
Op+1 = B

Therefore, Oy +1 c:n + c,}”
T 1
=B (X + )8 + 2u
T
= B"EB + 2v (A.2)

c® = Ero (x - W) (%41 - ug+q )

= Epo (_}5—_1.&°)/[(_}5-=_L_£_°)T_§+ e - €]
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= ¥°B  since x and € are uncorrelated.

Similarly ¢! = I!'B.

Therefore, C = ¢° + Cc! = I8, (A.3)

From (A.1), (A.2), and (A.3),

Ty - Tzt = 0

Te
Up+1 — CZ71p

Op+1 — cTzic = _QTZE_ + 2V - ﬁTZZ"lZE = 2V.

(U.n +1—CT2-1U,)2

Therefore, dy+1 - 4, m
Op +1—C Z'IC

i
o

Q.E.D.

(iii) Under hypothesis H° let

where €¢° has mean €°, variance U and uncorrelated
with Xx.

As in (ii) it can be shown that

Mas+1 = B
41 = BB + v

C0 = ZOE:

Under hypothesis H!, let



where €' has mean ¢!, variance v, and uncorrelated with Xx.

Then,

Thus, HUp+1 = Hp+1— Mp+1

) 1
On+1 = Tpey + Tpe
= gTIB + 2u

C=C°+C1=ZB

(Lln +1—CTZ-1L1)2

An+r — O T
Oy +1-C Z"'IC

(¥ -¢l)2
2V ¢

Now if we let U - 0 with €° # ZT, we can make the two pattern
classes be singularly distributed on separate, parallel

hyperplanes.

lim (Gpay - &) = =, Q.E.D.
V-0
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(iv) It is a well-known property of multivariate normal

distributions that

£l = a4y + cTg= (8 - u)

E an+1|§

_g_] = Uﬂ"'l - CTZ-ICO

]

Var [x,+1 1%
Setting § = 0, we get the desired result.

A.3 Characteristic Functions

If p(x3, X2y « « « 4, Xy ) is the probability density
function of a random vector (x;, X2, . . . , X, ) then
M(Vi, Vo, « o « 5 V3) = E el(V1X1+V3X2+"'+VnXh)

i
—
8
—
8

[=<]
. . I p(xl’ XB, ° ° . 9 }(ﬂ)
- 00

el(v1x1+v2x3+-~-+v,xn).dxldx2 c .. ax,

is called its characteristic function. It is the multi-
diménsional Fourier transform of the probability density
function.

The characteristic function may be used to obtain

moments of any order.



Iy s Iy — 1
E [XJ_ Xa c 0 X 1= ir1+rg+...+rn
+ ® » o
arl r2+ +ruM(V1 9 VQ e e oVn )
dvy Tlavy 2 L L L dy, TR
V1=V2="'=vn=0'

It can also be used to obtain the statistics of certain non-
linear functions of random variables. For example, if X is

a scalar r.v.,

E cos x =3 E (¥ + &7%) = %-M(l) + % M(~-1).

From the defining equation, it is seen that M(-1) = M*(1l).

Therefore, E cos x = Re M(1l)

or, E Re el* = Re E &% showing commutativity of E

and Re operators in the case of complex functions of real
r.v.
As a further example, if (x;, Xz) is a random vector,

/

E sin x; sin xp = 5 E [cos (x; - Xz) - cos (xy + xa)]

N

E [ei(xi,_XS) + e—i(X]_“’Xg) _ ei(X1+Xg)

L]
=

 omilxatxe) |
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[M(1, -1) + M(-1, 1) - M(1, 1) - M (-1, -1)]

Re [M(1, -1) - M(1, 1)1,

] [N

since M(-1, 1) = M*(1, -1) and M(-1, -1) = M*(1, 1)

A.4 Variability of Estimates

In Chapter IV, the expected values of the average
signal and the autocorrelogram as predicted by the model were
shown to agree closely with the predicted behavior. Here
the variability of these estimates is derived. 1In each case,
it is shown that the variability goes to zero, as the length
of the EEG record used goes to infinity.

If z is a complex r.v.,

Var z = E |z - E (2)]|2

E |z|2 - |E(2)]".

The average signal (spontaneous EEG)

N-1

/x(§t, + t).

g

z = =
=X

j=0

It was proved in Chapter IV that

_1
zNqgt,

1 1 .
E(z) = 1l -~zqt, {1-e e*g(po+qt) iw, t

1_e'zqta

Z
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Now,

|22

zz*

eiw,(jt,+t)+ie(jt,+t) e—iw.(kt,+t)—ie(kt,+t)

1 NE:I NE:J. ) *

= 5= 2o 1o x(jt, + t)x*(kt, + t)
1 N=1 N=1

= z z
EE J=0 k=0

In the sum, there are N terms

terms are all equal to unity.

_ :L.Nil.NEI eie(jt“+t)—ie(kt,+t)

since w,t,= 2.

for which j = k and hence these

By symmetry, the rest of the

sum is equal to twice the triangular sum for which j > k.

Thus,

N-1 §=1

|z|2 =#(n+2 T 'z

§J=0 k=0

8(jt, + t) and 6(kt, + t) are

E [6(jt, + t)]®
E [0(kt, + t)]?

E 6(jt, + t)0(kt, + t)

Therefore,

REICTR

+t)—iG(kt,+t)>. (A.4)

jointly Gaussian with

po + ql(jt, + t)

Po + glkt, + t)

po + glkt,+ t) for k < j.
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B eie(jt,+t)-ie(kt_,+t) _

|
=
et

~

!
-t

1.
e z(i-klqt, (A.5)

Now,

.y g 1. -y _1. - 1
NZI IS e“g(]-—k)qta _ Nzl 5iqt, 321 skqgt,
1=0 k=0 =0 k=0

_ V5 cohdat, (1-e23qt‘)

: 1
i [l_efEtha N]
1-c2dta L ;_Eqts " (a.6)

From (A.4), (A.5) and (A.6)

1 1
1 29tayy 1 2(1-e 3Ndta)
Elz|® =g Sm— + 5 1t Tgt
esdta_31 (1-e59 ) (1-e 59"
Var z = E |z]|® - |E(2)]®
. Sy
_1e®en 1 2(1-e 2N40)
N 3a9ta_; N7 (7 3% (1_¢-59%s)

1
'—th
1l ~qgt l-e 2 2
_-—z.eqa(

)2 e—(po+qt)
l—e'%qt‘

It is seen that var z = 0 as N = ®, implying mean square
convergence.

The average signal (EEG with repetitive stimuli)

In this case,
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E [0(5t, + t)]?

Po +qt

E [6(kt, + t)]®

Po + qt

E 0(jt, + t)-0(kt, + t) = poa 1-%l |

Therefore,

B eie(jta+t)—ie(kt,+t) _ o~ (po+qt) e+poa'4‘”

and

N=1 N=1 fi-el  _
Elz]? = ﬁé‘a-o 2 ePo e~ (Potat) (A.7)

From Chapter IV,

|E(z) |2 = e~ (Potat)

Therefore,
Var z = e-(p°+qt)(SN - 1) where Sy is the double
sum in (A.7).
It will now be proved that lim Sy = 1, so we have mean

N=
square convergence.

NEI N=1 epoagg—q

1
Svo = §F §j=0 ka

0 <a<1.
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Given any infinitesimal €; > 0, we can always find N, (e;)

such that

ly-x]
1 s P <1+e€ for |j - k]| 2 N(e).

{The left hand inequality is obviously true. The right hand

inequality implies

poa =¥l < 1n (1 + ;)

- Inpo + (j —k) Ina s 1n 1n (1 + €,)

In 1n (l+4€; )=-1n po
In a

-3 -x| =

(observing that ln a is negative).

The right side is a positive number and we have to merely
pick N; (¢; ) as the nearest integer above it.) '

Now split the double sum into two parts--T,y for
which |j - k| 2 N; (e;) and Tay for which |j - k| < Ny (e;) so

that
1
Sv = §F (Tyn + T2n).
Any term in Ty is bounded above by ep°, the bound being

achieved for j - k = 0.

Therefore,
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1l £ any term in Tyy S 1 + €; S any term in Tpy < ep°e

The number of terms in Tgy is of O0(N). Therefore, given any

infinitesimal €; > 0, we can f£find N; (€z) such that

0= 'ﬁ}g Tawn < €ga for N 2 Na(eg)- (A.8)
The number of terms in Tyy is O(N®). Therefore,
1< ﬁ%-TlN S 1+¢€ for N2N(e). (A.9)

Adding inequalities (A.8) and (A.9),
1 <8y <1+ €, + €5 for N =2 Max [N; (e;), Naleg)]. .
Letting €1,‘€g - 0 and N - «, we get
lim Sy = 1 Q.E.D.
N —0co

Autocorrelogram (spontaneous EEG)

1 Ntg
Ry (1) = = [ x(£)x*(t + T)at
Nt, Nt,
Ry (T) |2 = ﬁf%g fo x(t)x*(t + T)dtsfo x*(u)x(u + T)du

Nt Nt

1 & 2 ifw,t+0(t)] —ilw,u+6(u)]
ol e e =
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ei[wa {(u+T)+0 (u+T)] ae-i[w, {(t+m+6 (t+T)]dudt

Nt, Nt :

1 [ @ 10(t)=i0(t+T)=i8 (W) +iB(utt) g oo

N2t2 Yo

In order to evaluate E |RN(T)|2, we need the fourth order
characteristic function of random variables 6(t), 6(t + T),
8(u), 8(u + 1) which are jointly Gaussian. It will have to

be evaluated at (1, -1, -1, 1) and depends on the relative
positions of the instants t, t + T, u, u + T. First, it is
observed that, by symmetry, the integral is twice that over
the triangular region shown in the figure below. The triangle
itself is split up into regions I, II, III, the integrals

over which are denoted by I, Iz, Is.

!
J

IT

1

\'’4
o+

Thus E|Ry (T)|? = -Eég;-c—z— (I, + Ip + Ia). (a.9)
a
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In regions I and I1I,

Therefore,

u<t<u+T<¢t+ T,

the covariance matrix of the four random variables

8(t), 6(t + 7), B8(u), 8(u + T) is given by

Po

Po

Po

Po

+ gt
+ gt
+ qu

+ gt

Po

Po

Po

+ gt Po + gu Po + gt
+ qt + gT Po + qu Po + qu + T
+ qu Po + qu Po + qu
+ qu Po + qu + qT Po + qu

Thus it can be seen that

M(1, -1, -1, 1) = e~a(t=u)  rier cancellation of terms.

Therefore,

I,

I

T T
Io fo et guae

% - é%w(l - e~4T) after evaluation.
Nt, t
f f e—q(t_U)dudt
T t-T
% (wt, - 7)(1 - e™dT) after evaluation.

In region III,
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u<u+T<t<t+rT,.

The covariance matrix of the four random variables is then

given by
Po + gt Po + gt Po +qu Po +qu+grT
Po + gt Po +gqt+qgT Po + qu Po +qu+gT
Po +qu Po + qu +qT Po +qu Po + qu
Po +qu+qgrT Po tqu+qgT Po +qu Po +qu+q'1‘_-J

Thus,

]
S JE
=
‘-+
m
1
_]
)
®
!
Q
_‘

As N = », for fixed T,

1im E |Ry(T)]? = 797,
N =300
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From Chapter IV |E Ry(7)|? = 797,

Therefore, lim Var Ry(T) = 0, again proving mean square

N —o0

convergence.

A.5 Evaluation of a Conditional Density

(X3, X2 ¢ » « 5 Xy) are real r.v.s with zero mean

and covariance matrix poZy where

1 a a? a® . .. aV~-1?
a 1 o a® ... aN-?
a2 o 1 a . . aN~3

It is required to find the conditional density

p(anX;\, Koy o o o o XN—].)o

It is first necessary to find det Iy and Zy?. Expanding in

terms of the first row,
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det ZN = det ‘ L] ° ® ® e ° » ° ® ® L] @

o o} N A
a? 1 . o o QN-S8
o’ o ol -4

- Q-+det

since all other cofactors are zero

[det ZN—I - a2det ZN—I]

(1 - az)det ZN-I'

By induction it follows that

det Zy = (1 - a®)N"1det & = (1 - a®)N"1,

Ty’ is the tridiagonal matrix
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1 -0 0 0 e o e 0
-0 1+a? -Q 0 . . 0
1 0 -a 1+a® -Q . e . 0
1-a® s e e e e e e e e e e e e e e e e e e
0 0 . e . -a 1+a? -a
0 0 « o . 0 -0 1

which can be verified by direct multiplication.

p(X]_, Xag o o o o XN)

Now p(xy|x1, X2, - . . Xn-1 ) =
’ ’ ’ p(xl, Xag o o o XN—l)

e O
1 1-a2
p‘(xl, Xg,s..,XN)z r - leZPo( )
(2m)2 (po det Zy)2
_ Qn-1
1 1-a?
P{x1, Xz « « « , Xn=1) = S w— — e 2po { )
(211) 2 (po det ZN—I )2
X1
X2
where Qn = (Xl, Xy o o o o XN)(ZN)—I °
X

2 2 2
= (X + x5 + ¢+ +x3) +a?(x3 +x5 + - -+ x2_)

- ZQ(X]_Xg + XpgXg + o o o + XN_.]_Xn)u

It is seen that
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i

2 2
Qv — Q-1 Xy + 0FXy~y - 20Xy-1Xy

(XN - OXy-q )2,

Therefore,

2
1 (XN—GXN_l )

p(lexla Xz g o o o Xn-1) =

exp -
‘/2ﬂpo (l_az ) 2Po (1-a?)

which is Gaussian with mean axy-; and variance po (1 -~ a®).
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